- PII
- S0044461825010063-1
- DOI
- 10.31857/S0044461825010063
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 98 / Issue number 1
- Pages
- 51-65
- Abstract
- Журнал прикладной химии, Синтез и свойства силиконовых композитов, содержащих никотин
- Keywords
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 9
References
- 1. Mark J. E., Sullivan J. L. Model networks of endlinked polydimethylsiloxane chains. I. Comparisons between experimental and theoretical values of the elastic modulus and the equilibrium degree of swelling // J. Chem. Phys. 1977. V. 66. N 3. P. 1006–1011. https://doi.org/10.1063/1.434056
- 2. Dimitrios N. Soulas, Merope Sanopoulou, Kyriaki G. Papadokostaki. Hydrophilic modification of silicone elastomer films: Thermal, mechanical and theophylline permeability properties // Mater. Sci. Eng. 2013. V. C33. P. 2122–2130. https://doi.org/10.1016/j.msec.2013.01.031
- 3. Malcolm R.,, McCullagh S., Woolfson A., Gorman S., Jones D., Cuddy J. Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial // J. Controlled Release. 2003. V. 97. P. 313–320. https://doi.org/10.1016/j.jconrel.2004.03.029
- 4. Brook M. A., Holloway A. C., Kenneth K. Ng, Hrynyk M., Moore C., Lall R. Using a drug to structure its release matrix and release profile // Int. J. Pharm. 2008. V. 358. P. 121–127. https://doi.org/10.1016/j.ijpharm.2008.02.029
- 5. Snorradottir B. S., Gudnason P. I., Scheving R., Thorsteinsson F., Masson M. Release of anti-inflammatory drugs from a silicone elastomer matrix system // Pharmazie. 2009. V. 64. P. 19–25. https://doi.org/10.1691/ph.2008.8206
- 6. Mark J. E., Jiang C. Y., Tang M. Y. Simultaneous curing and filling of elastomers // Macromolecules. 1984. V. 17. N 12. P. 2613–2616. https://doi.org/10.1021/ma00142a026
- 7. Yuan Q. W., Mark J. E. Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces // Macromol. Chem. Phys. 1999. V. 200. P. 206–220. https://doi.org/10.1002/ (SICI)1521-3935(19990101)200:1%3C206::AID-MACP206%3E3.0.CO;2-S
- 8. Farmazyan Z. M., Atabekyan M. L. Hakopyan E. H., Hakobyan R. M., Grigoryan, S. G., Topuzyan V. O. Development of methods for the production of silicone membranes // Chem. J. Armenia. 2023. V. 76. N 1–2. P. 109–119. https://doi:10.54503/0515-9628-2023.76.1-2-109
- 9. Григорян С. Г., Акопян Э. А, Акобян Р. М., Фармазян З. М., Атабекян М. Л., Топузян В. О. Синтез ксерогелей диоксида кремния и их сорбционно-десорбционные свойства по отношению к никотину и гликолям // Журн. общей химии. 2023. Т. 93. № 8. С. 1281–1291. https://doi:10.31857/S0044460X23080139
- 10. [Grigoryan S. G., Hakopyan E. H., Hakobyan R. M., Farmazyan Z. M., Atabekyan M. L., Topuzyan V. O. Synthesis of silicon dioxide xerogels and their sorption–desorption properties with respect to nicotine and glycols // Russ. J. Gen. Chem. 2023. V. 93. N 8. P. 2048–2057. https://doi:10.1134/S1070363223080133].
- 11. EP 4322906 (publ. 2024). A substrate for delivering of biologically active substance.
- 12. Пат. РФ 2382046 (опубл. 2010). Водорастворимые кремнийорганические производные полиолов и гидрогели на их основе.
- 13. Mazurek A., Brook M. A.,Skov A. L. Glycerol–silicone elastomers as active matrices with controllable release profiles // Langmuir. 2018. V. 34. P. 11559–11566. https://doi:10.1021/acs.langmuir.8b02039
- 14. Tuomi T., Johnsson T., Reijula K. Analysis of nicotine, 3-hydroxycotinine, cotinine, and caffeine in urine of passive smokers by HPLC-tandem mass spectrometry // Clin. Chem. 1999. V. 45. N 12. P. 2164–2172. https://doi:10.1093/clinchem/45.12.2164
- 15. Zavilopulo A. N., Shpenik O. B., Markush P. P., Kontrosh E. E. Ionization of glycerin molecule by electron impact // Tech. Phys. 2015. V. 60. N 7. P. 957–963. https://doi:10.1134/s1063784215070282