- PII
- S0044461825010078-1
- DOI
- 10.31857/S0044461825010078
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 98 / Issue number 1
- Pages
- 66-72
- Abstract
- Журнал прикладной химии, Парциальная конденсация и вымораживание изотопов криптона
- Keywords
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Alban C., Journet T. P. Methods in molecular biology, plastics: Methods and protocols / Ed. E. Marechal. New York: Humana Press, 2018. P. 145–164. https://doi.org/10.1007/978-1-4939-8654-5_10
- 2. Bogojevic O., Leung A. Enzyme-assisted synthesis of high-purity, chain-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine // ACS Omega. 2020. V. 35. N 5. P. 22395–22401. https://dx.doi.org/10.1021/acsomega.0c02823
- 3. Dong W., Moon S. J., Kelleher J. K., Stephanopoulos G. Dissecting mammalian cell metabolism through 13C- and 2H-isotope tracing: Interpretations at the molecular and systems levels // Ind. Eng. Chem. Res. 2020. V. 59. N 6. P. 2593–2610. https://pubs.acs.org/doi/10.1021/acs.iecr.9b05154
- 4. Davies P. S. W. Stable isotopes: Their use and safety in human nutrition studies // Eur. J. Clin. Nutr. 2020. V. 74. P. 362–365. https://doi.org/10.1038/s41430-020-0580-0
- 5. Yancheshmeh M. S., Radfarnia H. R., Iliuta M. C. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam
- 6. reforming process // Chem. Eng. J. (Amsterdam, Neth.) 2016. V. 283. N 1. P. 420–444. https://doi.org/10.1016/j.cej.2015.06.060
- 7. Pat. US 20160051923A1 (publ. 2016). Purification of nitrogen trifluoride by pressure swing absorption. URL: https://patents.google.com/patent/US20160051923A1
- 8. Yang J., Zhang X., Mijiti Y., Sun Y., Jia M., Liu Z., Huang Y., Aisa H. A. Improving performance of molecularly imprinted polymers prepared with template of low purity utilizing the strategy of macromolecular crowding // J. Chromatogr. A. 2020. V. 1624. ID 461155. https://doi.org/10.1016/j.chroma.2020.461155
- 9. Liu Y., Pan L-m., Liu H-b. The dynamic effect of Micro-MHD convection on bubble grown at a horizontal microelectrode // Int. J. Hydrogen Energy. 2021. V. 46. N 27. P. 13923–13935. https://doi.org/10.1016/j.ijhydene.2021.01.155
- 10. Murray R. L., Holbert K. E. Nuclear Energy. An introduction to the concepts, systems, and applications of nuclear processes. Elsevier, Butterworth–Heinemann, 2020. P. 273–289.
- 11. Baranov I. Y., Koptev A. V. Pulsed CO laser for isotope separation of Uranium // AIP Conf. Proc. 2012. V. 1464. P. 689–706. https://doi.org/10.1063/1.4739921
- 12. Bigeleisen J. Advances in chemistry. Am. Chem. Soc. Washington, 1969. P. 1–24.
- 13. Van Hook W. A. // Handbook of Nuclear Chemistry. London: Springer, 2011. P. 2369–2402.
- 14. Haynes W. M. // Handbook of chemistry and physics. Boca Raton: CRC Press, 2016–2017. P. 4–94, 4–117, 9–58.
- 15. Preston-Thomas H. International temperature scale of 1990 // Metrologia. 1990. V. 27. N 1. P. 3–10. https://www.omega.com/en-us/resources/temperature-measurement-temperature-scale
- 16. Пат. RU 2407706C2 (опубл. 2010). Устройство для получения легкой воды. URL: https://patents.google.com/patent/RU2407706C2/ru?oq=RU2407706C2
- 17. Пат. RU 2496720C2 (опубл. 2013). Способ и система очистки воды. URL: https://patents.google.com/patent/RU2496720C2/ru?oq=RU2496720C2
- 18. Noor K., Marttila H., Welker J. M., Mustonen K.-R., Kløve B., Ala-aho P. Snow sampling strategy can bias estimation of meltwater fractions in isotope hydrograph separation // J. Hydrol. 2023. V. 627. ID 130429. https://doi.org/10.1016/j.jhydrol.2023.130429
- 19. Пат. RU 2744357C1 (опубл. 2021). Способ очистки трифторида азота от примеси тетрафторида углерода. URL: https://patents.google.com/patent/RU2744357C1/ru?oq=RU2744357C1
- 20. Cholach A., Yakovin D. Removal of CF4 from NF3 at the phase interface // J. Taiwan Inst. Chem. Eng. 2022. V. 131. ID 104178. https://doi.org/10.1016/j.jtice.2021.104178
- 21. Theeuwes F., Bearman R. J. The p, V, T behavior of dense fluids(2) III. The vapor pressure and orthobaric density of krypton // J. Chem. Thermodyn. 1970. V. 2. N 2. P. 179–185. https://doi.org/10.1016/0021-9614 (70)90081-9
- 22. Гиршфельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей / Пер. с англ. Е. В. Ступоченко. М: ИЛ, 1961 С. 409–479 [Hirschfelder J., Curtiss C. F., Bird R. B. Molecular theory of gases and liquids. New York: John Wiley and Sons, 1954].
- 23. Weissman S., DuBro G. A. Self-diffusion coefficients for krypton // Phys. Fluids. 1970. V. 13. N 11. P. 2689–2692. https://doi.org/10.1063/1.1692851
- 24. Choppin G. R., Liljenzin J. O., Rydberg J. Radiochemistry and nuclear chemistry. Butterworth–Heinemann: Elsevier, 2002. P/ 11–40.
- 25. Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nucl. Phys. A. 2003. V. 729. N 1. P. 3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001
- 26. Lee M. W., Eshelman D. M., Bigeleisen J. Vapor pressures of isotopic krypton mixtures. Intermolecular forces in solid and liquid krypton // J. Chem. Phys. 1972. V. 56. N 9. P. 4585–4592. https://doi.org/10.1063/1.1677907
- 27. Рабинович И. Б. Влияние изотопии на физико-химические свойства жидкостей, М.: Наука, 1968. С. 1–308.
- 28. Canongia Lopes J. N., Rebelo L. P. N., Bigeleisen J. Isotopic krypton mixtures revisited: Vapor pressure isotope effects // J. Chem. Phys. 2002. V. 117. N 11. P. 8836–8841. https://doi.org/10.1063/1.1514230
- 29. Figgins B. F., Smith B. L. Density and expansivity of solid krypton // Philos. Mag. (1798–1977). Ser. 8. 1960. V. 5. N 50. P. 186–188. https://doi.org/10.1080/14786436008243301
- 30. Clusius K. Atomwärmen und schmelzwärmen von neon, argon, und krypton // Z. Phys. Chem. (Berlin, Ger.) 1936. V. 31. P. 459–474. https://doi.org/10.1515/zpch-1936-3134
- 31. Смирнов Л. Ф. Технология производства тяжелой воды вымораживанием // Холодильна технiка та технологiя. 2017. Т. 53. № 1. С. 76–83. http://dx.doi.org/10.15673/ret.v53i1.546