RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ПОЛУЧЕНИЕ НАНОРАЗМЕРНЫХ ЧАСТИЦ АЛЬДЕГИДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ КРАХМАЛА

PII
S30345545S0044461825040035-1
DOI
10.7868/S3034554525040035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 4
Pages
264-278
Abstract
Методами прямого растворения, осаждения и самоорганизации получены наночастицы на основе альдегидсодержащих производных крахмала, основные размерные и структурные характеристики которых определены методами динамического светорассеяния и сканирующей электронной микроскопии. Введение альдегидных групп в состав нативного крахмала и гидроксиэтилкрахмала осуществляли путем окисления водным раствором периодата натрия при различных мольных соотношениях реагентов. Установлено, что средний диаметр наночастиц диальдегидкрахмала и диальдегидгидроксиэтилкрахмала, сформированных методом самоорганизации (70 до 100 нм), меньше средних размеров наночастиц, полученных методами прямого растворения и осаждения (190–250 нм), при этом коллоидная суспензия гидрофобизированных производных крахмала характеризуется более узким распределением наночастиц по размерам (
Keywords
Date of publication
01.01.2026
Year of publication
2026
Number of purchasers
0
Views
49

References

  1. 1. Cardoso M., De Oliveira É.D., Passos M. L. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills // Fuel. 2009. V. 88. N 4. P. 756–763. https://doi.org/10.1016/j.fuel.2008.10.016
  2. 2. Aro T., Fatehi P. Production and application of lignosulfonates and sulfonated lignin // ChemSusChem. 2017. V. 10. N 9. P. 1861–1877. https://doi.org/10.1002/cssc.201700082
  3. 3. Azadi P., Inderwildi O. R., Farnood R., King D. A. Liquid fuels, hydrogen and chemicals from lignin: A critical review // Renew. Sustain. Energy Rev. 2013. V. 21. P. 506–523. https://doi.org/10.1016/j.rser.2012.12.022
  4. 4. Fang Z., Smith R. L. Production of biofuels and chemicals from lignin. Singapore: Springer Singapore, 2016. P. 3–35.
  5. 5. Kocaturk E., Salan T., Ozcelik O., Alma M. H. Recent advances in lignin-based biofuel production // Energies. 2023. V. 16. N 8. P. 1–17. https://doi.org/10.3390/en16083382
  6. 6. He P., Dai L., Li X., Yang Z., Hua F., Li L., Wei B. Lignosulfonate and its derivatives for oil-well drilling: A concise review // Pap. Biomater. 2021. V. 6. N 2. P. 59–68. https://doi.org/10.12103/j.issn.2096-2355.2021.02.006
  7. 7. Degtyareva É. V., Marakina L. D., Surov Yu. N., Sobolʹ G. N., Zinsu Zh. Ch., Galʹchenko T. G. Plasticizers based on nonionogenous surface-active substances and macromolecular compounds for refractory concretes // Refractories. 1986. V. 27. N 1. P. 20–23. https://doi.org/10.1007/BF01398282
  8. 8. Khajeh A., Nazari Z., Movahedrad M., Vakili A. H. A state-of-the-art review on the application of lignosulfonate as a green alternative in soil stabilization // Sci. Total Environ. 2024. V. 943. ID 173500. https://doi.org/10.1016/j.scitotenv.2024.173500
  9. 9. Li L., Wang J., Chen Z., Dong J., Chang P., Zhang J., Yang T., Ding R. Preparation of sodium lignosulfonate-based porous carbon for supercapacitors with outstanding rate capacity and high voltage // Chem. Eng. J. 2025. V. 507. ID 160760. https://doi.org/10.1016/j.cej.2025.160760
  10. 10. Ling Y.-K., Li J.-Z., Zhu T., Wang J.-H., Wang Q., Li Y.-J., Nong G.-Z. Sodium lignosulfonate-derived ONS-doped hierarchical porous carbon for high-performance DSSC counter electrodes // Org. Electron. 2024. V. 127. ID 107015. https://doi.org/10.1016/j.orgel.2024.107015
  11. 11. Табаров Ф. С., Астахов М. В., Калашник А. Т., Климонт А. А., Козлов В. В., Галимзянов Р. Р. Активация углеродных нановолокон и их применение в качестве электродных материалов для суперконденсаторов // ЖПХ. 2019. Т. 92. № 9. С. 1188–1196. https://doi.org/10.1134/S0044461819090123 @@Tabarov F. S., Astakhov M. V., Kalashnik A. T., Klimont A. A., Kozlov V. V., Galimzyanov R. R. Activation of carbon nanofibers and their application as electrode materials for supercapacitors // Russ. J. Appl. Chem. V. 92. N 9. P. 1266–1273. https://doi.org/10.1134/S107042721909012X.
  12. 12. Luo W., He Q., Zhang C., Jiang Z., Cheng Y., Wang H. Lignin-based polymer networks enabled N, S Co-doped defect-rich hierarchically porous carbon anode for long-cycle Li-ion batteries // ACS Sustain. Chem. Eng. 2024. V. 12. N 7. P. 2881–2892. https://doi.org/10.1021/acssuschemeng.3c08045
  13. 13. Rathod S., Jaiswal N., Ravikumar M.K., Patil S., Shukla A. Effect of binary additives on performance of the undivided soluble-lead-redox-flow battery // Electrochim. Acta. 2021. V. 365. ID 137361. https://doi.org/10.1016/j.electacta.2020.137361
  14. 14. Zhao Z., Hao S., Hao P., Sang Y., Manivannan A., Wu N., Liu H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode // J. Mater. Chem. A. 2015. V. 3. N 29. P. 15049–15056. https://doi.org/10.1039/C5TA02770E
  15. 15. Arkhipova E. A., Ivanov A. S., Maslakov K. I., Savilov S. V. Nitrogen-doped mesoporous graphene nanoflakes for high performance ionic liquid supercapacitors // Electrochim. Acta. 2020. V. 353. ID 136463. https://doi.org/10.1016/j.electacta.2020.136463
  16. 16. Gao B., Zhou H., Yang J. One-step preparation of nitrogen-doped graphene nanosheets for high-performance supercapacitors // Appl. Surf. Sci. 2017. V. 409. P. 350–357. https://doi.org/10.1016/j.apsusc.2017.03.015
  17. 17. Lin R., Taberna P. L., Chmiola J., Guay D., Gogotsi Y., Simon P. Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors // J. Electrochem. Soc. 2009. V. 156. N 1. P. A7–A12. https://doi.org/10.1149/1.3002376
  18. 18. Wang W., Guo S., Lee I., Ahmed K., Zhong J., Favors Z., Zaera F., Ozkan M., Ozkan C. S. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors // Sci. Rep. 2014. V. 4. N 1. ID 04452. https://doi.org/10.1038/srep04452
  19. 19. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. N 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  20. 20. Oginni O., Singh K., Oporto G., Dawson-Andoh B., McDonald L., Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics // Bioresour. Technol. Rep. 2019. V. 7. ID 100266. https://doi.org/10.1016/j.biteb.2019.100266
  21. 21. Lv Y., Zhang F., Dou Y., Zhai Y., Wang J., Liu H., Xia Y., Tu B., Zhao D. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application // J. Mater. Chem. 2012. V. 22. N 1. P. 93–99. https://doi.org/10.1039/C1JM12742J
  22. 22. Zhang Y., Wen G., Fan S., Tang X., Wang D., Ding C. Partially reduced and nitrogen-doped graphene oxides with phenylethylamine for high-performance supercapacitors // J. Mater. Sci. 2018. V. 53. N 16. P. 11715–11727. https://doi.org/10.1007/s10853-018-2471-5
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library