RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ХРАНЕНИЕ И ГЕНЕРАЦИЯ ВОДОРОДА В СИСТЕМЕ ДИАММИАКАТ БОРГИДРИДА МАГНИЯ–ДИАММИАКАТ БОРГИДРИДА ЦИНКА

PII
S30345545S0044461825050068-1
DOI
10.7868/S3034554525050068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 5
Pages
340-348
Abstract
С целью создания материалов с высоким массовым содержанием водорода, пригодных для использования в системах электроснабжения мобильных устройств на основе топливных элементов, выполнен синтез и проведено исследование свойств хранения и генерации водорода для композита на основе диаммиакатов борандридов магния и цинка. Синтез выполнен методом механохимической обработки смеси Mg(BH)(NH)Zn(BH)(NH) в мольном соотношении 1:1. Образцы были проанализированы с использованием современных методов анализа: РФА, ИК-спектроскопии, СТА и РФЭС. Проведено термическое разложение композита и обнаружено снижение температуры выделения водорода по сравнению с исходными диаммиакатами. Кроме того, результаты исследования показали, что механизм реакции термического разложения композитов отличается от механизмов термолиза исходных комплексов.
Keywords
Date of publication
01.01.2026
Year of publication
2026
Number of purchasers
0
Views
69

References

  1. 1. Huang Y., Cheng Y., Zhang J. A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications // Ind. Eng. Chem. Res. 2021. V. 60. P. 2737–2771. https://doi.org/10.1021/acs.iecr.0c04387
  2. 2. Züttel A., Wenger P., Rentsch S., Sudan P., Mauron Ph., Emmenegger Ch. LiBH4 a new hydrogen storage material // J. Power Sources. 2003. V. 118. P. 1–7. https://doi.org/10.1016/S0378-7753 (03)00054-5
  3. 3. Abdalla A. M., Hossain S., Nisfindy O. B., Azad A. T., Dawood M., Azad A. K. Hydrogen production, storage, transportation and key challenges with applications: A review // Energy Convers Manage. 2018. V. 165. P. 602–627. doi.org/10.1016/j.enconman.2018.03.088
  4. 4. Ouyang L., Chen K., Jiang J., Yang X.-S., Zhu M. Hydrogen storage in light-metal based systems: A review // J. Alloys Compd. 2020. V. 829. P. 154597. https://doi.org/10.1016/j.jallcom.2020.154597
  5. 5. Staubitz A., Robertson A. P. M., Manners I. Ammonia-borane and related compounds as dihydrogen sources // Chem. Rev. 2010. V. 110. P. 4079–4124. https://doi.org/10.1021/cr100088b
  6. 6. Hirscher M., Yartys V. A., Baricco M., von Colbe J. B., Blanchard D., Bowman R. C. Jr., Broom D. P., Buckley C. E., Chang F., Chen P., Cho Y. W., Crivello J.-C., Cuevas F., David W. I. F., de Jongh P. E., Denys R. V., Dornheim M., Felderhoff M., Filinchuk Y., Froudakis G. E., Zlotea C. J. Materials for hydrogen-based energy storage — past, recent progress and future outlook // J. Alloys Compd. 2020. V. 827. P. 153548. https://doi.org/10.1016/j.jallcom.2019.153548
  7. 7. Архангельский И. В., Кравченко О. В., Цветков М. В., Добровольский Ю. А., Шиховцев А. В., Соловьев М. В., Зайцев А. А. Синтез и особенности термолиза дигидрата бортгидрида натрия // ЖПХ. 2019. Т. 92. № 6. С. 703–711. https://doi.org/10.1134/S0044461819060021 @@ Arkhangel'sky I. V., Kravchenko O. V., Tsvetkov M. V., Dobrovolsky Yu. A., Shikhovtsev A. V., Solovev M. V., Zaitsev A. A. Synthesis of sodium borohydride dihydrate and specific features of its thermolysis // Russ. J. Appl. Chem. 2019. V. 92. N. 6. P. 734–742. https://doi.org/10.1134/S1070427219060028
  8. 8. Wu R., Ren Z., Zhang X., Lu Y., Li H., Ma M., Pan H., Liu Y. Nanosheet-like lithium borohydride hydrate with 10 wt % hydrogen release at 70 °C as a chemical hydrogen storage candidate // J. Phys. Chem. Lett. 2019. V. 10. P. 1872–1877. https://doi.org/10.1021/acs.jpelett.9b00416
  9. 9. Zhu Y., Shen S., Yang X.-S., Zeng L., Tsui G., Xu Z.-L., Zhou Q., Tang R., Chan K. C. Role of rare-earth alloys in lithium borohydride regeneration from hydrous lithium metaborate // ACS Sustain. Chem. Eng. 2023. V. 11. P. 8931–8938. https://doi.org/10.1021/acssuschemeng.3c01073
  10. 10. Guo Y., Yu X., Sun W., Sun D., Yang W. The hydrogen-enriched Al–B–N system as an advanced solid hydrogen-storage candidate // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087–1091. https://doi.org/10.1002/anie.201006188
  11. 11. Chu H., Wu G., Xiong Z., Guo J., He T., Chen P. Structure and hydrogen storage properties of calcium borohydride diammoniate // Chem. Mater. 2010. V. 22. P. 6021–6028. https://doi.org/10.1021/cm1023234
  12. 12. Vasiliev V. P., Kravchenko O. V., Soloviev M. V., Zyubin A. S., Zyubina T. S., Zaytsev A. A., Shikhovtsev A. V., Blinova L. N., Dobrovolsky Y. A. Synthesis, properties and thermal decomposition particularities of magnesium borohydride ammoniates // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320–35328. https://doi.org/10.1016/j.ijhydene.2022.08.100
  13. 13. Соловьев М. В., Васильев В. П., Шилов Г. В., Кравченко О. В., Зайцев А. А., Шиховцев А. В., Добровольский Ю. А., Булычев Б. М. Синтез, уточнение свойств и структур монокристаллических ди–и триаммиакатных комплексов бортгидрида магния // Изв. AH. Сер. хим. 2024. Т. 73. № 4. С. 906–916. https://doi.org/10.1007/s11172-024-4204-z @@ Solovev M. V., Vasiliev V. P., Shilov G. V., Kravchenko O. V., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A., Bulychev B. M. Synthesis of single-crystal di- and triammine complexes of magnesium borohydride. Refinement of structures and properties // Russ. Chem. Bull. 2024. V. 73. P. 906–916. https://doi.org/10.1007/s11172-024-4204-z
  14. 14. Зюбин А. С., Зюбина Т. С., Кравченко О. В., Соловьев М. В., Васильев В. П., Зайцев А. А., Шиховцев А. В., Добровольский Ю. А. Квантово-химическое моделирование отщепления молекулярного водорода от диаммиаката бортгидрида магния // ЖНХ. 2024. Т. 69. № 6. С. 853–865. https://doi.org/10.31857/S0044457X24060071 @@ Zyubin A. S., Zyubina T. S., Kravchenko O. V., Solovev M. V., Vasiliev V. P., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A. Quantum–chemical simulation of molecular hydrogen abstraction from magnesium borohydride diammoniate // Russ. J. Inorg. Chem. 2024. V. 69. P. 867–878. https://doi.org/10.1134/S0036023624600874
  15. 15. Guo Y., Jiang Y., Xia G., Yu X. Ammine aluminium borohydrides: An appealing system releasing over 12 wt % pure H₂ under moderate temperature // Chem. Commun. 2012. V. 48. P. 4408–4410. https://doi.org/10.1039/c2ce30751k
  16. 16. Wang K., Zhang J.-G., Lang X.-Q. The mechanism of controllable dehydrogenation: CPMD study of M(BH₄)₂(NH₃)₁ (M = Li, Mg) decomposition // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015–7018. https://doi.org/10.1039/C5CP06808H
  17. 17. Johnson S. R., David W. I., Royse D. M. Sommariva M., Tang C. Y., Fabbiani F. P., Jones M. O., Edwards P. P. The monoammoniate of lithium borohydride, Li(NH₃)₃BH₄: An effective ammonia storage compound // Chem. Asian. J. 2009. V. 4. P. 849–854. https://doi.org/10.1002/asia.200900051
  18. 18. Gu Q., Guo L., Gao Y., Tan Y. B., Tang Z., Wallwork K. S., Zhang F., Yu X. Structure and decomposition of zinc borohydride ammonia adduct: Towards a pure hydrogen release // Energy Env. Sci. 2012. V. 5. P. 7590–7600. https://doi.org/10.1039/C2EE02485C
  19. 19. Solovevichik G., Her J.-H., Stephens P. W., Gao Y., Rijssenbeek J., Andrus M., Zhao J.-C. Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH₄)₂·2NH₃ // Inorg. Chem. 2008. V. 47. P. 4290–4298. https://doi.org/10.1021/tc7023633
  20. 20. Wang K., Zhang J.-G., Jiao J.-S., Zhang T., Zhou Z.-N. A first-principles study: Structure and decomposition of mono-/bimetallic ammine borohydrides // J. Phys. Chem. C. 2014. V. 118. P. 8271–8279. https://doi.org/10.1021/jp5012439
  21. 21. Chen X., Yuan F., Tan Y., Tang Z., Yu X. Improved dehydrogenation properties of Ca(BH₄)₂·nNH₃ (n = 1, 2, and 4) combined with Mg(BH₄)₂ // J. Phys. Chem. C. 2012. V. 116. P. 21162–21168. https://doi.org/10.1021/jp302866w
  22. 22. Guo Y., Wu H., Zhou W., Yu X. Dehydrogenation tuning of ammine borohydrides using double-metal cations // J. Am. Chem. Soc. 2011. V. 133. P. 4690–4693. https://doi.org/10.1021/ja1105893
  23. 23. Wang M., Ouyang L., Peng C., Zhu X., Zhu W., Shao H., Zhu M. Synthesis and hydrolysis of NaZn(BH4)3 and its ammoniates // J. Mater. Chem. A. 2017. V. 5. P. 17012–17020. https://doi.org/10.1039/C7TA05082H
  24. 24. Wu D., Ouyang L., Liu J., Wang H., Shao H., Zhu M. Hydrogen generation properties and hydrolysis mechanism of Zr(BH4)4\(^+\)8NH\(_3\) // J. Mater. Chem. A. 2017. V. 5. P. 16630–16635. https://doi.org/10.1039/C7TA04308B
  25. 25. Gradisek A., Jepsen L. H., Jensen T. R., Conradi M. S. Nuclear magnetic resonance study of molecular dynamics in ammine metal borohydride Sr(BH4)2(NH\(_3\))\(_2\) // J. Phys. Chem. C. 2016. V. 120. P. 24646–24654. https://doi.org/10.1021/acs.jpcc.6b08162
  26. 26. Emdadi A., Demir S., Kislak Y., Tekin A. Computational screening of dual-cation metal ammine borohydrides by density functional theory // J. Phys. Chem. C. 2016. V. 120. P. 13340–13350. https://doi.org/10.1021/acs.jpcc.6b01833
  27. 27. Huang J., Tan Y., Su J., Gu Q., Cerny R., Ouyang L., Sun D., Yu X., Zhu M. Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate // Chem. Commun. 2015. V. 51. P. 2794–2797. https://doi.org/doi.org/10.1039/C4CC09317H
  28. 28. Huang J., Ouyang L., Gu Q., Yu X., Zhu M. Metal-borohydride-modified Zr(BH4)4\(^+\)8NH\(_3\): Low-temperature dehydrogenation yielding highly pure hydrogen // Chem. Eur. J. 2015. N 21. P. 14931–14936. https://doi.org/10.1002/chem.201501461
  29. 29. Zhao S., Xu B., Sun N., Sun Z., Zeng Y., Meng L. Improvement in dehydrogenation performance of Mg(BH4)2-2NH\(_3\) doped with transition metal: First-principles investigation // Int. J. Hydr. Energy. 2015. V. 40. P. 8721–8731. https://doi.org/10.1016/j.ijhydene.2015.05.023
  30. 30. Кравченко О. В., Кравченко С. Е., Савенко С. Е. Аммиакаты боргидридов металлов // Журн. общ. химии. 1990. Т. 60. С. 2641–2660.
  31. 31. Hoffmann R. Extended Huckel theory. III. Compounds of boron and nitrogen // J. Chem. Phys. 1964. V. 40. P. 2474–2480. https://doi.org/10.1063/1.1725550
  32. 32. Morrison C. A., Siddick M. M. Dihydrogen bonds in solid BH\(_3\)NH\(_3\) // Angew. Chem. Int. Ed. 2004. V. 43. P. 4780–4782. https://doi.org/10.1002/anie.200460096
  33. 33. Ravnsbek D., Filinchuk Y., Ceremius Y., Jakobsen H. J., Besenbacher F., Skibsted J., Jensen T. R. A series of mixed-metal borohydrides // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659–6663. https://doi.org/10.1002/anie.200903030
  34. 34. Nickels E. A., Jones M. O., David W. I. F., Johnson S. R., Lowton R. L., Sommariva M., Edwards P. P. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817–2819. https://doi.org/10.1002/anie.200704949
  35. 35. Lindemann I., Ferrer R. D., Dunsch L., Filinchuk Y., Cerny R., Hagemann H., D’Anna V., Daku L. M. L., Schultz L., Gutfleisch O. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Chem. Eur. J. 2010. V. 16. P. 8707–8712. https://doi.org/10.1002/chem.201000831
  36. 36. Fang Z. Z., Kang X. D., Wang P., Li H. W., Orimo S. I. Unexpected dehydrogenation behavior of LiBH\(_4\)/Mg(BH4)\(_2\) mixture associated with the in situ formation of dual-cation borohydride // J. Alloys Compd. 2010. V. 491. P. L1–L4. https://doi.org/10.1016/j.jallcom.2009.10.149
  37. 37. Cerny R., Severa G., Ravnsbek D. B., Filinchuk Y., D’Anna V., Hagemann H., Haase D., Jensen C. M., Jensen T. R. NaSc(BH4)4: A novel scandium-based borohydride // J. Phys. Chem. C. 2010. V. 114. P. 1357–1364. https://doi.org/10.1021/jp908397w
  38. 38. Hagemann H., Longhini M., Kaminski J. W., Wesolowski T. A., Cerny R., Penin N., Sorby M. H., Hauback B. C., Severa G., Jensen C. M. LiSc(BH4)4: A novel salt of Li\(^+\) and discrete Sc(BH4)\(_4^-\) complex anions // J. Phys. Chem. C. 2008. V. 112. P. 7551–7555. https://doi.org/10.1021/jp803201g
  39. 39. Aidhy D. S., Wolverton C. First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111
  40. 40. Cerny R., Kim K. C., Penin N., D’Anna V., Hagemann H., Sholl D. S. AZn\(_2\)(BH4)\(_5\) (A = Li, Na) and NaZn(BH4)\(_3\): Structural studies // J. Phys. Chem. C. 2010. V. 114. P. 19127–19133. https://doi.org/10.1021/jp105957r
  41. 41. Ravnsbek D. B., Frommen C., Reed D., Filinchuk Y., Sorby M., Hauback B. C., Jakobsen H. J., Book D., Besenbacher F., Skibsted J., Jensen T. R. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy // J. Alloys Compd. 2011. V. 509. P. S698–S704. https://doi.org/10.1016/j.jallcom.2010.11.008
  42. 42. Fang Z. Z., Kang X. D., Luo J. H., Wang P., Li H. W., Orimo S. Formation and hydrogen storage properties of dual-cation (Li, Ca) borohydride // J. Phys. Chem. C. 2010. V. 114. P. 22736–22741. https://doi.org/10.1021/jp109260g
  43. 43. Pat. 1,070,148. BRD (publ. 1959). Die Darstellung von Zn(NH\(_3\))\(_4\)(BH\(_4\))\(_2\) und Cd(NH\(_3\))\(_6\)(BH\(_4\))\(_2\).
  44. 44. Мякишев К. Ф., Торбачева И. Н., Потапова О. Г., Волков В. В. О взаимодействии хлорида цинка с тетрагидроборатами щелочных металлов // Изв. CO AH CCCP. 1989. Вып. 4. С. 50–55.
  45. 45. Сметанин В. Д. Техника лабораторного эксперимента в химии / Учеб. пособие для вузов. М.: Химия, 1999. 600 с. ISBN 5-7245-0955-5
  46. 46. Vasiliev V. P., Solovev M. V., Kravchenko O. V., Zyubin A. S., Zyubina T. S., Shikhovtsev A. V., Zaytsev A. A., Dobrovolsky Y. A. Magnesium borohydride monoammine as hydrogen storage: Structure and pathway analysis for the thermal decomposition reaction // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738
  47. 47. Li J. S., Zhang C. R., Li B., Cao F., Wang S. Q. Boron nitride coatings by chemical vapor deposition from borazine // Surf. Coat. Technol. 2011. V. 205. P. 3736–3741. https://doi.org/10.1016/j.surfcoat.2011.01.032
  48. 48. Li Y., Liu Y., Zhang X., Zhou D., Lu Y., Gao M., Pan H. An ultrasound-assisted wet-chemistry approach towards uniform Mg(BH\(_4\))\(_2\)-6NH\(_3\) nanoparticles with improved dehydrogenation properties // J. Mater. Chem. A. 2016. V. 54. P. 8366–8373. https://doi.org/10.1039/C6TA02944B
  49. 49. Santoni A., Verella U., Celentano G., Gambardella U., Mancini A. X-ray photoemission study of MgB\(_2\) films synthesized from in-situ annealed MgB\(_2\)/Mg multilayers // Appl. Phys. A. 2007. V. 86. P. 485–490. https://doi.org/10.1007/s00339-006-3790-y
  50. 50. Höche D., Blavert C., Cavellier M., Busardo D., Glorian T. Magnesium nitride phase formation by means of ion beam implantation technique // Appl. Surf. Sci. 2011. V. 257. P. 5626–5633. https://doi.org/10.1016/j.apsusc.2011.01.061
  51. 51. Qu J., Li Q., Luo C., Cheng J., Hou X. Characterization of flake boron nitride prepared from the low temperature combustion synthesized precursor and its application for dye adsorption // Coatings. 2018. V. 8. P. 214. https://doi.org/10.3390/coatings8060214
  52. 52. Solis R. R., Quintana M. A., Blázquez G., Calero M., Muñoz-Batista M. J. Ruthenium deposited onto graphitic carbon modified with boron for the intensified photocatalytic production of benzaldehyde // Catal. Today. 2023. V. 423. P. 114266. https://doi.org/10.1016/j.cattod.2023.114266
  53. 53. Zhang B., Wu Q., Yu H., Bulin C., Sun H., Li R. Ge X., Xing R. High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine // Nanoscale Res. Lett. 2017. V. 12. P. 596. https://doi.org/10.1186/s11671-017-2366-4
  54. 54. Liang H., Jia L., Ji S., Ma S., Linkov V., Chen F. Mesoporous N-doped carbon with atomically dispersed Zn-N\(_x\) active sites as high-performance cathode in lithium-oxygen batteries // Ionics. 2021. V. 27. P. 4695–4704. https://doi.org/10.1007/s11581-021-04217-4
  55. 55. Lin J.-H., Huang Y.-J., Su Y.-P., Liu C.-A., Devan R. S., Ho C.-H., Wang Y.-P., Lee H.-W., Chang C.-M., Liou Y., Ma Y.-R. Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanopdates // RSC Advances. 2012. V. 2. P. 2123–2127. https://doi.org/10.1039/C2RA00972B
  56. 56. Li F., Ding X.-B., Cao Q.-C., Qin Y.-H., Wang C. A ZIF-derived hierarchically porous Fe-Zn-N-C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media // Chem. Commun. 2019. V. 55. P. 13979–13982. https://doi.org/10.1039/C9CC07489A
  57. 57. Sobola D., Kaspar P., Čásiková K., Dallaev R., Papéz N., Sedlák P., Trčka T., Orudchev F., Kaštyl J., Weiser A., Knápek A., Holcman V. PVDF fibers modification by nitrate salts doping // Polymers. 2021. V. 13. P. 2439. https://doi.org/10.3390/polym13152439
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library