RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

SOLVOMETALLURGICAL PROCESSING OF FERRUGINOUS WASTE FROM CARBONYL NICKEL PRODUCTION

PII
S30345545S0044461825070048-1
DOI
10.7868/S3034554525070048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 7-8
Pages
441-448
Abstract
The work is devoted to the solvometallurgical processing of ferruginous waste from carbonyl nickel production of JSC «Kola MMC» — bottom residue afterburning, the main components of which are iron(III), nickel(II), chromium(III) and cobalt(II). It is shown that the use of solvometallurgical leaching of afterburning residues with octanol-1 saturated with hydrochloric acid makes it possible to combine the processes of leaching and selective extraction of iron(III) in one stage, resulting in the formation of two phases during leaching — an aqueous phase containing non-ferrous metals and an organic phase containing iron(III). It was established that under optimal process conditions — solid:liquid ratio = 1:25, T = 50°C, c(HCl) = 3.36 M — within 1 h, the total extraction of iron(III), nickel(II), cobalt(II) and chromium(III) is 93.2, 85.3, 70.5 and 80.8%, respectively, with 92% Fe(III), 1.2% Ni(II), 12.0% Co(II) and less than 0.1% Cr(III) passing into the extractant phase. The resulting de-ironed hydrochloric acid solution of non-ferrous metals can be sent for separation of non-ferrous metals, and the iron-containing extract after washing from non-ferrous metal impurities can be sent for re-extraction with subsequent production of iron(III) chloride solution and regeneration of the extractant.
Keywords
сольвометаллургия никелевые отходы железо(III) октанол-1 соляная кислота
Date of publication
01.01.2026
Year of publication
2026
Number of purchasers
0
Views
41

References

  1. 1. Li Y., Tan Z., Liu Y., Lei C., He P., Li J., He Z., Cheng Y., Wu F., Li Y. Past, present and future of high-nickel materials // Nano Energy. 2024. V. 119. ID 109070 https://doi.org/10.1016/j.nanoen.2023.109070
  2. 2. Paserin V., Baksa S., Zaitsev A., Shu J., Shojai F., Nowosiadly W. Potential for mass production of nickel-based nanomaterials by carbonyl process // J Nanosci. Nanotechnol. 2008. V. 8. P. 4049–4055 https://doi.org/10.1166/jnn.2008.AN44
  3. 3. Касиков А. Г., Щелокова Е. А., Соколов А. Ю., Майорова Е. А. Переработка и повторное использование железистых отходов медно-никелевого производства // Горн. журн. 2020. № 9. С. 91–95 https://doi.org/10.17580/gzh.2020.09.13
  4. 4. Резник И. Д., Ермаков Г. П., Шнеерсон Я. М. Никель. В 3 т. Т. 3. М.: Наука и технологии, 2003 С. 313–339
  5. 5. Kasikov A. G., Shchelokova E. A., Timoshchik O. A., Sokolov A. Y. Utilization of converter slag from nickel production by hydrometallurgical method // Metals 2022. V. 12. ID 1934 https://doi.org/10.3390/met12111934
  6. 6. Цапах С. Л., Мальц И. Э., Четверкин А. Ю., Смирнов П. В. Железоочистка высокохлоридных никелевых растворов // Цв. металлы. 2019. № 11 С. 61–67. https://doi.org/10.17580/tsm.2019.11.08
  7. 7. Kasikov A., Sokolov A., Shchelokova E. Extraction of iron(III) from nickel chloride solutions by mixtures of aliphatic alcohols and ketones // Solvent Extr. Ion Exch. 2022. V. 40. N 3. P. 251–268 https://doi.org/10.1080/07366299.2021.1911036
  8. 8. Чекмарев А. М. Сольвометаллургия — перспективное направление металлургии редких и цветных металлов. М.: ЗАО «Издательство Атомэнергоиздат», 2004. С. 35–36
  9. 9. Kurniawan K., Lee J.-C, Lee H., Chagnes A., Kim S. Solvoleaching process of metal oxides using acidic organic extractants // J. Sustain. Metall. 2024. V. 10 P. 965–981 https://doi.org/10.1007/s40831-024-00843-0
  10. 10. Gijsemans L., Roosen J., Riano S., Jones P. T., Binnemans K. Ammoniacal solvoleaching of copper from high-grade chrysocolla // J. Sustainable Metall 2020. V. 6. P. 589–598 https://doi.org/10.1007/s40831-020-00294-3
  11. 11. Kurniawan K., Kim S., Bae M., Chagnes A., Lee J.-C. Investigation on solvometallurgical processes for extraction of metals from sulfides // Miner. Eng. 2024 V. 218. ID 109005 https://doi.org/10.1016/j.mineng.2024.109005
  12. 12. Orefice M., Binnemans K. Solvometallurgical process for the recovery of rare-earth elements from Nd– Fe–B magnets // Sep. Purif. Technol. 2021. V. 258 ID 117800 https://doi.org/10.1016/j.seppur.2020.117800
  13. 13. Palden T., Regaldio M., Onghena B., Binnemans K. Selective metal recovery from jarosite residue by leaching with acid-equilibrated ionic liquids and precipitation-stripping // ACS Sustainable Chem. Eng 2019. V. 7. P. 4239–4246 https://doi.org/10.1021/acssuschemeng.8b05938
  14. 14. Rudnik E. Innovative approaches to tin recovery from low-grade secondary resources: A focus on (bio) hydrometallurgical and solvometallurgical methods // Materials. 2025. V. 18. ID 819 https://doi.org/10.3390/ma18040819
  15. 15. Nicol G., Goosey E., Yildiz D. S., Loving E., Nguyen V. T., Riano S., Yakoumis I., Martinez A. M., Siriwardana A., Unzurrunzaga A., Spooren J., Atia T. A., Michielsen B., Dominguez-Benetton X., Lanaridi O. Platinum group metals recovery using secondary raw materials (PLATIRUS): Project overview with a focus on processing spent autocatalyst // Johnson Matthey Technol. Rev. 2021 V. 65. N 1. P. 127–147 https://doi.org/10.1595/205651321X16057842276133
  16. 16. Palden T., Machiels L., Regardio M., Binnemans K Antimony recovery from lead-rich dross of lead smelter and conversion into antimony oxide chloride (Sb4O5Cl2) // ACS Sustain. Chem. Eng. 2021. V. 9 P. 5074–5084 https://doi.org/10.1021/acssuschemeng.0c09073
  17. 17. Щелокова Е. А., Копкова Е. К., Громов П. Б., Короткова Г. В. Растворимость одноатомных алифатических спиртов в воде и водных растворах хлороводородной кислоты // ЖПХ. 2012. Т. 85 № 3. С. 495–499 @@Shchelokova E. A., Kopkova E. K., Gromov P. B., Korotkova G. V. Solubility of monohydric aliphatic alcohols in water and aqueous HCl solutions // Russ J. Appl. Chem. 2012. V. 85. P. 465–469 https://doi.org/10.1134/S1070427212030251
  18. 18. Чукреев К. Г., Дорожко В. А., Афонин М. А. Математическая модель экстракции FeCl3 и HCl в системе FeCl3–HCl–H2O–ундекан-1-ол // ЖОХ 2022. Т. 92. № 1. С. 155–164 https://doi.org/10.31857/S0044460X22010176 @@Chukreev V. G., Dorozhko V. A., Afonin M. A. Mathematical model of FeCl3 and HCl extraction in the FeCl3–HCl–H2O–undecan-1-ol system // Russ. J Gen. Chem. 2022. V. 92. N 1. P. 108–116 https://doi.org/10.1134/S1070363222010157
  19. 19. Wang X., Liu W., Liang B., Lü L., Li C. Combined oxidation and 2-octanol extraction of iron from a synthetic ilmenite hydrochloric acid leachate // Sep Purif. Technol. 2016. V. 158. P. 96–102 https://doi.org/10.1016/j.seppur.2015.11.030
  20. 20. Касиков А. Г., Соколов А. Ю. Экстракционное извлечение железа(III) из растворов хлороводородной кислоты изомерами октанола в инертных разбавителях // Совр. наукоемк. технол. 2019. № 3 Ч. 2. С. 187–192. https://doi.org/10.17513/snt.37463
  21. 21. Dong S., Li. T., Yu J., Wei Q., Ren X. A strategy for treatment of low-grade ore: Efficient separation and purification of iron // Process Saf. Environ. Prot. 2024 V. 191. P. 1313–1323 https://doi.org/10.1016/j.psep.2024.09.069
  22. 22. Kopkova E. K., Shchelokova E. A., Gromov P. B. Processing of titanomagnetite concentrate with a hydrochloric extract of n-octanol // Hydrometallurgy 2015. V. 156. P. 21–27 http://dx.doi.org/10.1016/j.hydromet.2015.05.007
  23. 23. Binnemans K., Jones R. T. Solvometallurgy: An emerging branch of extractive metallurgy // J. Sustain Metall. 2017. V. 3. P. 570–600 https://doi.org/10.1007/s40831-017-0128-2
  24. 24. Золотов Ю. А., Серякова И. В., Карякин А. В., Грибов Л. А., Зубрилина М. Е. Гидратно-сольватный механизм экстракции // Докл. АН СССР. 1962 Т. 145. № 1. С. 100–103
  25. 25. Lu Z.-Y., Muir D. M. Dissolution of metal ferrites and iron oxides by HCl under oxidising and reducing conditions // Hydrometallurgy. 1988. V. 21. P. 9–21 https://doi.org/10.1016/0304-386X (88)90013-8
  26. 26. Шебаршова И. М., Левашова Е. В., Таранин И. В., Ласьков С. А., Клещев Е. Г. Опыт освоения технологии регенерации соляной кислоты в псевдоожиженном слое // Сталь. 2013. № 9. С. 96–98 https://elibrary.ru/rwyatr
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library