RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ELECTROCHEMICAL REDUCTION OF GASES USING GAS DIFFUSION ELECTRODES: A REVIEW OF RECENT ADVANCES

PII
S30345545S0044461825070063-1
DOI
10.7868/S3034554525070063
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 7-8
Pages
459-472
Abstract
Practical application of electrochemical gas reduction to obtain valuable products is hampered by slow mass transfer and low solubility of gases in most electrolytes. When using gas diffusion electrodes, mass transfer of gas to the electrode surface is improved, which helps maintain a high concentration of the reagent near the catalyst layer and allows increasing the product yield by tens of times. The article presents a review of works devoted to the electrochemical reduction of O, CO, CO, N, NO using cells with a gas diffusion electrode. Information on electrode materials and process characteristics is provided. In the CO reduction reaction on electrode materials based on Au, Ag, Zn, Co, Fe, Ni, the main product is CO; when using materials based on Bi, Pb, Sb, In, Sn, HCOOH is formed with high selectivity. Lower hydrocarbons, alcohols and carboxylic acids can be obtained using electrode materials based on Cu. Reduction of O with the formation of HO occurs when using electrode materials based on C, Fe, Ti, Ag. Formation of NH during reduction of N or NO occurs when using materials based on C, Ca, Cu. Electrochemical cells with gas diffusion electrodes can be used as elements of complex systems for CO capture and processing and continuous reactors. Developments are underway on designs of electrochemical cells with two gas diffusion electrodes and electrodes with a surface area of more than 1 m. The features of gas diffusion electrode assembly, problems and ways of technology development are described. A comparison of gas electroreduction processes in systems with submerged and gas diffusion electrodes is provided.
Keywords
электровосстановление газов газодиффузионный электрод диоксид углерода моноксид углерода кислород азот моноксид азота пероксид водорода электродные материалы
Date of publication
01.01.2026
Year of publication
2026
Number of purchasers
0
Views
40

References

  1. 1. Venkatramanan V., Bhadra S., Maddirala S., Singh A., Prasad S., Rathore D., Sevda S. Role of electrochemistry and electrochemical technologies for environmental bioremediation // Advances in environmental electrochemistry / Eds D. A. Jadhav, M. Behera, S. Sevda, M. P. Shah. Amsterdam: Elsevier, 2024. P. 313–334 https://doi.org/10.1016/B978-0-443-18820-6.00011-4
  2. 2. Espinoza-Montero P. J., Martínez-Huitle C. A. Advancing environmental sustainability through electrochemical innovations // J. Solid State Electrochem. 2025. V. 29. N 8. P. 3051–3052 https://doi.org/10.1007/s10008-025-06341-x
  3. 3. Li X. Development in electrochemical technology for environmental wastewater treatment // Int. J Electrochem. Sci. 2022. V. 17. N 12. ID 2212110 https://doi.org/10.20964/2022.12.104
  4. 4. Huang Q., Huang L., Wang Z., Liao H., Yan J., Li H., Guo Y., Zhang H. Research and prospects of electrochemical technology and educational innovation in water pollution treatment // Water Emerg. Contam. & Nanoplast. 2025. V. 4. N 1. ID 8 https://doi.org/10.20517/wecn.2024.79
  5. 5. Rabiee H., Ma B., Yang Y., Li F., Yan P., Wu Y., Zhang X., Hu S., Wang H., Ge L., Zhu Z. Advances and challenges of carbon-free gas-diffusion electrodes (GDEs) for electrochemical CO2 reduction // Adv Funct. Mater. 2025. V. 35. N 1. ID 2411195 https://doi.org/10.1002/adfm.202411195
  6. 6. Zhang X., Meng X., Zhao H., Zhou W., Gao J., Zhao G. Review of H2O2 generation from O2 electroreduction by gas diffusion electrodes: From homogeneous to heterogeneous electrocatalysis // J. Electroanal. Chem 2024. V. 974. ID 118700 https://doi.org/10.1016/j.jelechem.2024.118700
  7. 7. Rabiee H., Ge L., Zhang X., Hu S., Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review // Energy Environ. Sci. 2021. V. 14. N 4. P. 1959–2008 https://doi.org/10.1039/D0EE03756G
  8. 8. Mazzucato M., Durante C. Comparative analysis of rotating electrode and gas diffusion electrode methods for assessing activity and stability of Fe-NC based catalysts in ORR // Electrochim. Acta. 2023. V. 463 ID 142801 https://doi.org/10.1016/j.electacta.2023.142801
  9. 9. Alinejad S., Quinson J., Wiberg G. K. H., Schlegel N., Zhang D., Li Y., Reichenberger S., Barcikowski S., Arenz M. Electrochemical reduction of CO2 on Au electrocatalysts in a zero-gap, half-cell gas diffusion electrode setup: A systematic performance evaluation and comparison to an H-cell setup // ChemElectroChem. 2022. V. 9. N 12. ID e202200341 https://doi.org/10.1002/celc.202200341
  10. 10. Кузьмин А. В., Шаинян Б. А. Механизмы реакций каталитического электрохимического восстановления кислорода (ORR) и углекислого газа (CO2RR) // Успехи химии. 2023. Т. 92. № 6. ID RCR5085 @@Kuzmin A. V., Shainyan B. A. Mechanisms of catalytic electrochemical reactions of oxygen reduction (ORR) and carbon dioxide reduction (CO2RR) // Russ. Chem Rev. 2023. V. 92. N 6. ID RCR5085 https://doi.org/10.59761/RCR5085
  11. 11. Küngas R., Blennow P., Heiredal-Clausen T., Holt T., Rass-Hansen J., Primdahl S., Hansen J. B. eCOs – A commercial CO2 electrolysis system developed by Haldor Topsoe // ECS Trans. 2017. V. 78. N 1 P. 2879–2884. https://doi.org/10.1149/07801.2879ecst
  12. 12. Jia S., Zhu Q., Han S., Zhai J., Dong M., Xia W., Xing X., Wu H., He M., Han B. Ultra-fast synthesis of three-dimensional porous Cu/Zn heterostructures for enhanced carbon dioxide electroreduction // Chem Sci. 2023. V. 14. N 41. P. 11474–11480 https://doi.org/10.1039/D3SC03317A
  13. 13. Wang M., Luo J. A coupled electrochemical system for CO2 capture, conversion and product purification // eScience. 2023. V. 3. N 5. ID 100155 https://doi.org/10.1016/j.esci.2023.100155
  14. 14. Tao H., Chang H., Wang F., Zhang Z., Min S. An integrated carbonized wood-based gas-diffusion electrode for high-current-density CO electrosynthesis in the flow cells // Sust. Energy Fuels. 2024. V. 8 N 8. P. 1641–1649 https://doi.org/10.1039/D4SE00018H
  15. 15. Lv X., Liu Q., Yang H., Wang J., Wu X., Li X., Qi Z., Yan J., Wu A., Cheng T., Wu H. B. Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction // Adv. Funct. Mater. 2023. V. 33 N 12. ID 2301334 https://doi.org/10.1002/adfm.202301334
  16. 16. Yoshida S., Sampei M., Todoroki N., Hisamura E., Nakao K., Albrecht K., Wadayama T. Surface modification of gold by carbazole dendrimers for improved carbon dioxide electroreduction // Chem Commun. 2023. V. 59. N 23. P. 3459–3462 https://doi.org/10.1039/D3CC00350G
  17. 17. Eagle C., Neri G., Piercy V. L., Younis K., Siritanaratkul B., Cowan A. J. A manganese complex on a gas diffusion electrode for selective CO2 to CO reduction // Sust. Energy Fuels. 2023. V. 7. N 9 P. 2301–2307. https://doi.org/10.1039/D3SE00236E
  18. 18. Pu X., Zhang W., Ma M., Shi D., Han S., Xiong L. Atomic nickel on controllable mesoporous carbon nanospheres to boost electrochemical carbon dioxide reduction // Ionics. 2023. V. 29. N 9. P. 3683–3692 https://doi.org/10.1007/s11581-023-05095-8
  19. 19. Wei N., Zhao K., Zhou Z., Wang Y. C., Sun S. G. Impact of pore structure on electrochemical reduction of carbon dioxide in iron-and nitrogen-doped carbon materials: Solid–liquid interface versus solid–gas– liquid triple-phase boundary // J. Phys. Chem. C. 2023 V. 127. N 6. P. 2981–2987 https://doi.org/10.1021/acs.jpcc.2c08467
  20. 20. Hoffmann H., Kutter M., Osiewacz J., PaulischRinke M. C., Lechner S., Ellendorff B., Hilgert A., Manke I., Turek T., Roth C. Highly selective Ag foam gas diffusion electrodes for CO2 electroreduction by pulsed hydrogen bubble templation // EES Catal 2024. V. 2. N 1. P. 286–299 https://doi.org/10.1039/D3EY00220A
  21. 21. Du X., Zhang P., Zhang G., Gao H., Zhang L., Zhang M., Wang T., Gong, J. Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways // Natl. Sci. Rev. 2024. V. 11 N 2. ID nwad149. https://doi.org/10.1093/nsr/nwad149
  22. 22. Kanase R. S., Zewdie G. M., Arunachalam M., Badiger J., Sayed S. A., Ahn K. S., Ha J.-S., Sim U., Shin H., Kang, S. H. Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO2 reduction // J. Energy Chem. 2024. V. 88. P. 71– 81. https://doi.org/10.1016/j.jechem.2023.09.007
  23. 23. Feng S., Wang X., Cheng D., Luo Y., Shen M., Wang J., Zhao W., Fang S., Zheng H., Ji L., Zhang X., Xu W., Liang Y., Sautet P., Zhu J. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction // Angew. Chem. Int. Ed. 2024. V. 63. N 8 ID e202317942 https://doi.org/10.1002/anie.202317942
  24. 24. Fan J., Pan B., Wu J., Shao C., Wen Z., Yan Y., Wang Y., Li Y. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water // Angew. Chem. Int. Ed. 2024. V. 63. N 9 ID e202317828 https://doi.org/10.1002/anie.202317828
  25. 25. Chen G., Ge L., Ma B., Kuang Y., Rabiee H., Dorosti F., Nanjundan A. K., Zhu Z., Wang H. Pore accessibility matters in CO2 electrolysis: Preventing H2 formation and boosting triple-phase boundary on microtubular gas-diffusion electrodes // Appl. Catal. B: Environ. Energy. 2025. V. 363. ID 124803 https://doi.org/10.1016/j.apcatb.2024.124803
  26. 26. Zhou B., Li Z., Zhang C., Lu L. Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction // Front Environ. Sci. Eng. 2025. V. 19. N 4. ID 54 https://doi.org/10.1007/s11783-025-1974-y
  27. 27. Yamada T., Iwase K., Todoroki N., Honma I. High specific activity during electrochemical CO2 reduction through homogeneous deposition of gold nanoparticles on gas diffusion electrodes // ACS Appl. Energy Mater 2025. V. 8. N 2. P. 821–829 https://doi.org/10.1021/acsaem.4c02254
  28. 28. Li S.-H., Hu S., Liu H., Liu J., Kang X., Ge S., Zhang Z., Yu Q., Liu B. Two-dimensional metal coordination polymer derived indium nanosheet for efficient carbon dioxide reduction to formate // ACS Nano. 2023. V. 17. N 10. P. 9338–9346 https://doi.org/10.1021/acsnano.3c01059
  29. 29. Shen H., Zhou C., He Z., Wang C., Zhang J., Hou B., Xu F., Liu Y., Wang C. Continuous gas-to-liquid conversion for carbon-efficient electroreduction of CO2 // ChemRxiv. 2023 https://doi.org/10.26434/chemrxiv-2023-rtsmv
  30. 30. Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в сажевом газодиффузионном электроде с оловянным катализатором // Электрохимия. 2024. Т. 60 № 7. С. 467–472 https://doi.org/10.31857/S0424857024070019 https://www.elibrary.ru/pqmhuw @@Kolyagin G. A., Taran O. P. Electrochemical reduction of carbon dioxide to formate in the acetylene-black gas-diffusion electrode with a tin catalyst // Russ. J Electrochem. 2024. V. 60. N 7. P. 507–512 https://doi.org/10.1134/S1023193524700149
  31. 31. Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в кислом электролите в сажевом газодиффузионном электроде со свинцовым катализатором // Электрохимия. 2023. Т. 59. № 10. С. 606–609 https://doi.org/10.31857/S0424857023100092 https://www.elibrary.ru/whwhtl @@Kolyagin G. A., Taran O. P. Carbon dioxide electroreduction to formate in acid electrolytes in the acetylene black gas-diffusion electrode with lead catalyst // Russ. J. Electrochem. 2023. V. 59. N 10 P. 764–766 https://doi.org/10.1134/S1023193523100087
  32. 32. Shitrit Y., Karmel T., Rajput S., Cohen Y. S., Edri E. Catalytic layer microstructure in pulsed electrodeposited bismuth-based gas diffusion electrodes used for CO2 reduction to formate // Energy Fuels. 2025. V. 39. N 12. P. 5965–5973 https://doi.org/10.1021/acs.energyfuels.4c05106
  33. 33. Husein I., Hadi J. M., Surendar A., Gryzunova N. N., Khairullina R. G., Bokov D. O., Hoi H. T. Bismuth oxide nanostructure supported on Cu foam as efficient electrocatalyst toward carbon dioxide electroreduction // Ionics. 2023. V. 29. N 8. P. 3212– 3223. https://doi.org/10.1007/s11581-023-05000-3
  34. 34. Cao X., Wulan B., Wang Y., Ma J., Hou S., Zhang J. Atomic bismuth induced ensemble sites with indium towards highly efficient and stable electrocatalytic reduction of carbon dioxide // Sci. Bull. 2023. V. 68 N 10. P. 1008–1016 https://doi.org/10.1016/j.scib.2023.04.026
  35. 35. Song D., Zhang S., Ning H., Fei X., Wang M., Wang X., Wu W., Zhao Q., Li Y., Wu M. Self-supporting BiCu/ carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate // Sci. China Mater 2024. V. 67. N 3. P. 788–795 https://doi.org/10.1007/s40843-023-2742-9
  36. 36. Wang P., Wang X., Chandra S., Lielpetere A., Quast T., Conzuelo F., Schuhmann W. Hybrid enzymeelectrocatalyst cascade modified gas-diffusion electrodes for methanol formation from carbon dioxide // Angew. Chem. Int. Ed. 2025. V. 64. N 12 ID e202422882 https://doi.org/10.1002/anie.202422882
  37. 37. Díaz-Sainz G., Fernández-Caso K., Ávila-Bolívar B., Montiel V., Solla-Gullón J., Alvarez-Guerra M., Irabien A. Advances in the development of innovative Bi-Sn-Sb-based gas diffusion electrodes for continuous CO2 electroreduction to formate // J. CO2 Util. 2025 V. 95. ID 103070 https://doi.org/10.1016/j.jcou.2025.103070
  38. 38. Medvedev J. J., Tracey C., Engelhardt H., Steksova Y., Krivoshapkin P., Krivoshapkina E., Klinkova A Hands-on electrochemical reduction of CO2: Understanding electrochemical principles through active learning // J. Chem. Educ. 2022. V. 99. N 2 P. 1036–1043 https://doi.org/10.1021/acs.jchemed.1c01004
  39. 39. Rawat K. S., Mahata A., Pathak B. Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: Role of solvent towards product selectivity // J. Catal. 2017. V. 349. P. 118–127 https://doi.org/10.1016/j.jcat.2017.03.011
  40. 40. Rufer S., Nitzsche M., Garimella S., Lake J., Varanasi K. K. Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis // ChemRxiv. 2023 https://doi.org/10.26434/chemrxiv-2023-c2zz0
  41. 41. Nabil S. K., Roy S., Algozeeb W. A., Al-Attas T., Bari M. A. A., Zeraati A. S. Kannimuthu K., Demingos P. G., Rao A., Tran T. N., Wu X., Bollini P., Lin H., Singh C. V., Tour J. M., Ajayan P. M., Kibria M. G. Bifunctional gas diffusion electrode enables in situ separation and conversion of CO2 to ethylene from dilute stream // Adv. Mater. 2023. V. 35 N 24. ID. 2300389 https://doi.org/10.1002/adma.202300389
  42. 42. Xu Z., Xie Y., Wang Y. Pause electrolysis for acidic CO2 reduction on 3-dimensional Cu // Mater. Rep. Energy 2023. V. 3. N 1. ID 100173 https://doi.org/10.1016/j.matre.2022.100173
  43. 43. Bian L., Zhang Z. Y., Tian H., Tian N. N., Ma Z., Wang Z. L. Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4 // Chin. J. Catal. 2023. V. 54. P. 199–211 https://doi.org/10.1016/S1872-2067 (23)64540-1
  44. 44. Rihm S. D., Kovalev M. K., Lapkin A. A., Ager J. W., Kraft M. On the role of C4 and C5 products in electrochemical CO2 reduction via copper-based catalysts // Energy Environ. Sci. 2023. V. 16. N 4 P. 1697–1710. https://doi.org/10.1039/D2EE03752A
  45. 45. Lyu X., Li J., Zhang T., Li Z., Hwang I. H., Sun C., Jafta C. J., Yang J., Toops T. J., Cullen D. A., Serov A., Wu J. Revealing the activity and selectivity of ppm level copper in gas diffusion electrodes towards CO and CO2 electroreduction // EES Catal. 2023. V. 1. N 2 P. 117–124. https://doi.org/10.1039/D2EY00071G
  46. 46. Wang X., Miao M., Tang B., Duan H., Zhu F., Zhang H., Zhang X., Yin W.-J., Fu Y. Chlorineinduced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene // Nano Res. 2023. V. 16. N 7. P. 8827–8835 https://doi.org/10.1007/s12274-023-5554-9
  47. 47. Vichou E., Perazio A., Adjez Y., Gomez-Mingot M., Schreiber M. W., Sánchez-Sánchez C. M., Fontecave M. Tuning selectivity of acidic carbon dioxide electrolysis via surface modification // Chem Mater. 2023. V. 35. N 17. P. 7060–7068 https://doi.org/10.1021/acs.chemmater.3c01326
  48. 48. Takamatsu D., Fukatani N., Yoneyama A., Hirano T., Hirai K., Yabuuchi S., Watanabe K., Kamiya K., Nakanishi S. Dynamic relocation of copper catalysts in gas diffusion electrodes during CO2 electroreduction // J. Am. Chem. Soc. 2025. V. 147. N 27. P. 24103– 24112. https://doi.org/10.1021/jacs.5c07944
  49. 49. Sanjuán I., Kumbhar V., Prymak O., Ulbricht M., Andronescu C., Fischer L. Intrinsically conductive and Cu-functionalized polymer-composite membranes as gas diffusion electrodes for CO2 electroreduction // ChemSusChem. 2025. V. 18. N 2. ID e202401228 https://doi.org/10.1002/cssc.202401228
  50. 50. Rabiee H., Heffernan J. K., Ge L., Zhang X., Yan P., Marcellin E., Hu S., Zhu Z., Wang H., Yuan Z. Tuning flow-through Cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+ products // Appl. Catal. B: Environmental. 2023. V. 330. ID 122589 https://doi.org/10.1016/j.apcatb.2023.122589
  51. 51. Hejazi S. A., Taghipour F. Polytetrafluoroethylenebased gas diffusion electrode for electrochemical generation of hydrogen peroxide // Electrochim. Acta 2023. V. 439. ID 141695 https://doi.org/10.1016/j.electacta.2022.141695
  52. 52. Zhang Y., Mascaretti L., Melchionna M., Henrotte O., Kment S., Fornasiero P., Naldoni A. Thermoplasmonic in situ fabrication of nanohybrid electrocatalysts over gas diffusion electrodes for enhanced H2O2 electrosynthesis // ACS Catal. 2023. V. 13. N 15. P. 10205– 10216. https://doi.org/10.1021/acscatal.3c01837
  53. 53. Xia B., Huang Q., Wu K., Jiang L., Li M., Yu L., Ding S., Nie Z., Hua D., Duan J., Chen S. Dynamic gas-diffusion electrodes for oxygen electroreduction to hydrogen peroxide // AIChE J. 2023. V. 69. N 5 ID e18022. https://doi.org/10.1002/aic.18022
  54. 54. Zhou W., Xie L., Wang Y., Ding Y., Meng X., Sun F. Gao J., Zhao G. Oxygen-rich hierarchical activated coke-based gas diffusion electrode enables highly efficient H2O2 synthesis via O2 electroreduction // Sep Pur. Tech. 2023. V. 307. ID 122740 https://doi.org/10.1016/j.seppur.2022.122740
  55. 55. Li M., Zhu Z., Yuan S., Ji L., Zhao T., Gao Y., Wang H Nitrogen and oxygen co-doped graphite felt gas diffusion electrodes for efficient hydrogen peroxide electrosynthesis // Mol. Catal. 2023. V. 541. ID 113076 https://doi.org/10.1016/j.mcat.2023.113076
  56. 56. Ri K., Pak S., Sun D., Zhong Q., Yang S., Sin S., Wu L., Sun Y., Cao H., Han C., Xu C., Liu Y., He H., Li S., Sun C. Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air // Appl. Catal. B: Environmental. 2024. V. 343. ID 123471 https://doi.org/10.1016/j.apcatb.2023.123471
  57. 57. Cui L., Chen B., Zhang L., He C., Shu C., Kang H., Qiu J., Jing W., Ostrikov K. K., Zhang Z. An anti-electrowetting carbon film electrode with self-sustained aeration for industrial H2O2 electrosynthesis // Energy Environ. Sci. 2024. V. 17 N 2. P. 655–667. https://doi.org/10.1039/D3EE03223J
  58. 58. Hübner J. L., Ruland G., Pietschmann F., Brejwo Z., Paul B., Strasser P. Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes // Chem 2025. V. 11. N 4. ID 102363 https://doi.org/10.1016/j.chempr.2024.11.001
  59. 59. Wang L., Liu S., Meng J., Song M., Jiao M., Jiang H., Chen Y. Electrocatalytic lignin valorization via enhanced H2O2 generation using a MWNCT-modified gas diffusion electrode // ChemPlusChem. 2025. V. 90 N 5. ID e202400769 https://doi.org/10.1002/cplu.202400769
  60. 60. Zhang S., Mou Y., Zhou Y., Tong H., Gong H., He Y., Shen W., Li J. Hydrogen peroxide in-situ electrosynthesis using micropore-adjusted gas diffusion electrode and application in wastewater // J. Environ. Chem. Eng. 2025. V. 13. N 1. ID 115059 https://doi.org/10.1016/j.jece.2024.115059
  61. 61. Fu X., Niemann V. A., Zhou Y., Li S., Zhang K., Pedersen J. B., Saccoccio M., Andersen S. Z., Enemark-Rasmussen K., Benedek P., Xu A., Deissler N. H., Mygind J. B. V., Nielander A. C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Jaramillo T. F., Chorkendorff I. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis // Nat. Mater. 2024. V. 23. N 1. P. 101–107 https://doi.org/10.1038/s41563-023-01702-1
  62. 62. Fu X., Pedersen J. B., Zhou Y., Saccoccio M., Li S., Sažinas R., Katja L., Andersen S. Z., Xu A., Deissler N. H., Mygind J. B. V., Wie C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Chorkendorff I Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation // Science 2023. V. 379. N 6633. P. 707–712 https://doi.org/10.1126/science.adf4403
  63. 63. He Y., Wang M., Liu S., Zhang L., Cheng Q., Yan C., Qian T. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia // Chem. Eng. J. 2023. V. 454 ID 140106. https://doi.org/10.1016/j.cej.2022.140106
  64. 64. Xiao L., Mou S., Dai W., Yang W., Cheng Q., Liu S., Dong F. Identification of Cu(111) as superior active sites for electrocatalytic NO reduction to NH3 with high single-pass conversion efficiency // Angew Chem. Int. Ed. 2024. V. 63. N 11. ID e202319135 https://doi.org/10.1002/anie.202319135
  65. 65. Nwabueze Q. A., Leggett S. Advancements in the application of CO2 capture and utilization technologies — A comprehensive review // Fuels 2024. V. 5. N 3. P. 508–532 https://doi.org/10.3390/fuels5030028
  66. 66. Fu L., Ren Z., Si W., Ma Q., Huang W., Liao K., Huang Z., Wang Y., Li J., Xu P. Research progress on CO2 capture and utilization technology // J. CO2 Util 2022. V. 66. ID 102260 https://doi.org/10.1016/j.jcou.2022.102260
  67. 67. Moinee A. A., Rownaghi A. A., Rezaei F. Process development and techno-economic analysis for combined and separated CO2 capture-electrochemical utilization // Chem. Eng. J. 2024. V. 499. ID 155909 https://doi.org/10.1016/j.cej.2024.155909
  68. 68. Zhang W., Yang Y., Li Y., Li F., Luo M. Recent progress on integrated CO2 capture and electrochemical upgrading // Mater. Today Catal. 2023. V. 2 ID 100006 https://doi.org/10.1016/j.mtcata.2023.100006
  69. 69. Wen G., Ren B., Liu Y., Dong S., Luo D., Jin M., Wang X., Yu A., Chen Z. Bridging trans-scale electrode engineering for mass CO2 electrolysis // JACS Au 2023. V. 3. N 8. P. 2046–2061 https://doi.org/10.1021/jacsau.3c00174
  70. 70. Burungale V. V., Gaikwad M. A., Bae H., Mane P., Heo J., Seong C., Kim J. H., Oh J., Ha J. S. Advances in gas diffusion electrode technology for electrochemical CO2 reduction: Innovations, challenges, and future directions // Mater. Sci. Eng. R: Reports. 2025. V. 166. ID 101064 https://doi.org/10.1016/j.mser.2025.101064
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library