- Код статьи
- S30345545S0044461825070063-1
- DOI
- 10.7868/S3034554525070063
- Тип публикации
- Обзор
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 98 / Номер выпуска 7-8
- Страницы
- 459-472
- Аннотация
- Практическое применение электрохимического восстановления газов с получением ценных продуктов затруднено медленным массопереносом и низкой растворимостью газов в большинстве электролитов. При использовании газодиффузионных электродов улучшается массоперенос газа к поверхности электрода, что способствует поддержанию высокой концентрации реагента вблизи слоя катализатора и позволяет увеличить выход продукта в десятки раз. В статье представлен обзор работ, посвященных электрохимическому восстановлению O, CO, CO, N, NO с использованием ячеек с газодиффузионным электродом. Приведена информация об электродных материалах и характеристиках процессов. В реакции восстановления CO на электродных материалах на основе Au, Ag, Zn, Co, Fe, Ni основным продуктом является CO, при использовании материалов на основе Bi, Pb, Sb, In, Sn с высокой селективностью образуется HCOOH. Низшие углеводороды, спирты и карбоновые кислоты могут быть получены при использовании электродных материалов на основе Cu. Восстановление O с образованием HO происходит при использовании электродных материалов на основе C, Fe, Ti, Ag. Образование NH при восстановлении N или NO происходит при использовании материалов на основе C, Ca, Cu. Электрохимические ячейки с газодиффузионными электродами могут быть использованы как элементы комплексных систем по улавливанию и переработке CO и реакторов непрерывного действия. Ведутся разработки конструкций электрохимических ячеек с двумя газодиффузионными электродами и электродов с площадью поверхности более 1 м. Описаны особенности сборки газодиффузионных электродов, проблемы и пути развития технологии. Приводится сравнение процессов электровосстановления газов в системах с погружными и газодиффузионными электродами.
- Ключевые слова
- электровосстановление газов газодиффузионный электрод диоксид углерода моноксид углерода кислород азот моноксид азота пероксид водорода электродные материалы
- Дата публикации
- 01.01.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 39
Библиография
- 1. Venkatramanan V., Bhadra S., Maddirala S., Singh A., Prasad S., Rathore D., Sevda S. Role of electrochemistry and electrochemical technologies for environmental bioremediation // Advances in environmental electrochemistry / Eds D. A. Jadhav, M. Behera, S. Sevda, M. P. Shah. Amsterdam: Elsevier, 2024. P. 313–334 https://doi.org/10.1016/B978-0-443-18820-6.00011-4
- 2. Espinoza-Montero P. J., Martínez-Huitle C. A. Advancing environmental sustainability through electrochemical innovations // J. Solid State Electrochem. 2025. V. 29. N 8. P. 3051–3052 https://doi.org/10.1007/s10008-025-06341-x
- 3. Li X. Development in electrochemical technology for environmental wastewater treatment // Int. J Electrochem. Sci. 2022. V. 17. N 12. ID 2212110 https://doi.org/10.20964/2022.12.104
- 4. Huang Q., Huang L., Wang Z., Liao H., Yan J., Li H., Guo Y., Zhang H. Research and prospects of electrochemical technology and educational innovation in water pollution treatment // Water Emerg. Contam. & Nanoplast. 2025. V. 4. N 1. ID 8 https://doi.org/10.20517/wecn.2024.79
- 5. Rabiee H., Ma B., Yang Y., Li F., Yan P., Wu Y., Zhang X., Hu S., Wang H., Ge L., Zhu Z. Advances and challenges of carbon-free gas-diffusion electrodes (GDEs) for electrochemical CO2 reduction // Adv Funct. Mater. 2025. V. 35. N 1. ID 2411195 https://doi.org/10.1002/adfm.202411195
- 6. Zhang X., Meng X., Zhao H., Zhou W., Gao J., Zhao G. Review of H2O2 generation from O2 electroreduction by gas diffusion electrodes: From homogeneous to heterogeneous electrocatalysis // J. Electroanal. Chem 2024. V. 974. ID 118700 https://doi.org/10.1016/j.jelechem.2024.118700
- 7. Rabiee H., Ge L., Zhang X., Hu S., Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review // Energy Environ. Sci. 2021. V. 14. N 4. P. 1959–2008 https://doi.org/10.1039/D0EE03756G
- 8. Mazzucato M., Durante C. Comparative analysis of rotating electrode and gas diffusion electrode methods for assessing activity and stability of Fe-NC based catalysts in ORR // Electrochim. Acta. 2023. V. 463 ID 142801 https://doi.org/10.1016/j.electacta.2023.142801
- 9. Alinejad S., Quinson J., Wiberg G. K. H., Schlegel N., Zhang D., Li Y., Reichenberger S., Barcikowski S., Arenz M. Electrochemical reduction of CO2 on Au electrocatalysts in a zero-gap, half-cell gas diffusion electrode setup: A systematic performance evaluation and comparison to an H-cell setup // ChemElectroChem. 2022. V. 9. N 12. ID e202200341 https://doi.org/10.1002/celc.202200341
- 10. Кузьмин А. В., Шаинян Б. А. Механизмы реакций каталитического электрохимического восстановления кислорода (ORR) и углекислого газа (CO2RR) // Успехи химии. 2023. Т. 92. № 6. ID RCR5085 @@Kuzmin A. V., Shainyan B. A. Mechanisms of catalytic electrochemical reactions of oxygen reduction (ORR) and carbon dioxide reduction (CO2RR) // Russ. Chem Rev. 2023. V. 92. N 6. ID RCR5085 https://doi.org/10.59761/RCR5085
- 11. Küngas R., Blennow P., Heiredal-Clausen T., Holt T., Rass-Hansen J., Primdahl S., Hansen J. B. eCOs – A commercial CO2 electrolysis system developed by Haldor Topsoe // ECS Trans. 2017. V. 78. N 1 P. 2879–2884. https://doi.org/10.1149/07801.2879ecst
- 12. Jia S., Zhu Q., Han S., Zhai J., Dong M., Xia W., Xing X., Wu H., He M., Han B. Ultra-fast synthesis of three-dimensional porous Cu/Zn heterostructures for enhanced carbon dioxide electroreduction // Chem Sci. 2023. V. 14. N 41. P. 11474–11480 https://doi.org/10.1039/D3SC03317A
- 13. Wang M., Luo J. A coupled electrochemical system for CO2 capture, conversion and product purification // eScience. 2023. V. 3. N 5. ID 100155 https://doi.org/10.1016/j.esci.2023.100155
- 14. Tao H., Chang H., Wang F., Zhang Z., Min S. An integrated carbonized wood-based gas-diffusion electrode for high-current-density CO electrosynthesis in the flow cells // Sust. Energy Fuels. 2024. V. 8 N 8. P. 1641–1649 https://doi.org/10.1039/D4SE00018H
- 15. Lv X., Liu Q., Yang H., Wang J., Wu X., Li X., Qi Z., Yan J., Wu A., Cheng T., Wu H. B. Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction // Adv. Funct. Mater. 2023. V. 33 N 12. ID 2301334 https://doi.org/10.1002/adfm.202301334
- 16. Yoshida S., Sampei M., Todoroki N., Hisamura E., Nakao K., Albrecht K., Wadayama T. Surface modification of gold by carbazole dendrimers for improved carbon dioxide electroreduction // Chem Commun. 2023. V. 59. N 23. P. 3459–3462 https://doi.org/10.1039/D3CC00350G
- 17. Eagle C., Neri G., Piercy V. L., Younis K., Siritanaratkul B., Cowan A. J. A manganese complex on a gas diffusion electrode for selective CO2 to CO reduction // Sust. Energy Fuels. 2023. V. 7. N 9 P. 2301–2307. https://doi.org/10.1039/D3SE00236E
- 18. Pu X., Zhang W., Ma M., Shi D., Han S., Xiong L. Atomic nickel on controllable mesoporous carbon nanospheres to boost electrochemical carbon dioxide reduction // Ionics. 2023. V. 29. N 9. P. 3683–3692 https://doi.org/10.1007/s11581-023-05095-8
- 19. Wei N., Zhao K., Zhou Z., Wang Y. C., Sun S. G. Impact of pore structure on electrochemical reduction of carbon dioxide in iron-and nitrogen-doped carbon materials: Solid–liquid interface versus solid–gas– liquid triple-phase boundary // J. Phys. Chem. C. 2023 V. 127. N 6. P. 2981–2987 https://doi.org/10.1021/acs.jpcc.2c08467
- 20. Hoffmann H., Kutter M., Osiewacz J., PaulischRinke M. C., Lechner S., Ellendorff B., Hilgert A., Manke I., Turek T., Roth C. Highly selective Ag foam gas diffusion electrodes for CO2 electroreduction by pulsed hydrogen bubble templation // EES Catal 2024. V. 2. N 1. P. 286–299 https://doi.org/10.1039/D3EY00220A
- 21. Du X., Zhang P., Zhang G., Gao H., Zhang L., Zhang M., Wang T., Gong, J. Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways // Natl. Sci. Rev. 2024. V. 11 N 2. ID nwad149. https://doi.org/10.1093/nsr/nwad149
- 22. Kanase R. S., Zewdie G. M., Arunachalam M., Badiger J., Sayed S. A., Ahn K. S., Ha J.-S., Sim U., Shin H., Kang, S. H. Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO2 reduction // J. Energy Chem. 2024. V. 88. P. 71– 81. https://doi.org/10.1016/j.jechem.2023.09.007
- 23. Feng S., Wang X., Cheng D., Luo Y., Shen M., Wang J., Zhao W., Fang S., Zheng H., Ji L., Zhang X., Xu W., Liang Y., Sautet P., Zhu J. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction // Angew. Chem. Int. Ed. 2024. V. 63. N 8 ID e202317942 https://doi.org/10.1002/anie.202317942
- 24. Fan J., Pan B., Wu J., Shao C., Wen Z., Yan Y., Wang Y., Li Y. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water // Angew. Chem. Int. Ed. 2024. V. 63. N 9 ID e202317828 https://doi.org/10.1002/anie.202317828
- 25. Chen G., Ge L., Ma B., Kuang Y., Rabiee H., Dorosti F., Nanjundan A. K., Zhu Z., Wang H. Pore accessibility matters in CO2 electrolysis: Preventing H2 formation and boosting triple-phase boundary on microtubular gas-diffusion electrodes // Appl. Catal. B: Environ. Energy. 2025. V. 363. ID 124803 https://doi.org/10.1016/j.apcatb.2024.124803
- 26. Zhou B., Li Z., Zhang C., Lu L. Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction // Front Environ. Sci. Eng. 2025. V. 19. N 4. ID 54 https://doi.org/10.1007/s11783-025-1974-y
- 27. Yamada T., Iwase K., Todoroki N., Honma I. High specific activity during electrochemical CO2 reduction through homogeneous deposition of gold nanoparticles on gas diffusion electrodes // ACS Appl. Energy Mater 2025. V. 8. N 2. P. 821–829 https://doi.org/10.1021/acsaem.4c02254
- 28. Li S.-H., Hu S., Liu H., Liu J., Kang X., Ge S., Zhang Z., Yu Q., Liu B. Two-dimensional metal coordination polymer derived indium nanosheet for efficient carbon dioxide reduction to formate // ACS Nano. 2023. V. 17. N 10. P. 9338–9346 https://doi.org/10.1021/acsnano.3c01059
- 29. Shen H., Zhou C., He Z., Wang C., Zhang J., Hou B., Xu F., Liu Y., Wang C. Continuous gas-to-liquid conversion for carbon-efficient electroreduction of CO2 // ChemRxiv. 2023 https://doi.org/10.26434/chemrxiv-2023-rtsmv
- 30. Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в сажевом газодиффузионном электроде с оловянным катализатором // Электрохимия. 2024. Т. 60 № 7. С. 467–472 https://doi.org/10.31857/S0424857024070019 https://www.elibrary.ru/pqmhuw @@Kolyagin G. A., Taran O. P. Electrochemical reduction of carbon dioxide to formate in the acetylene-black gas-diffusion electrode with a tin catalyst // Russ. J Electrochem. 2024. V. 60. N 7. P. 507–512 https://doi.org/10.1134/S1023193524700149
- 31. Колягин Г. А., Таран О. П. Электрохимическое восстановление диоксида углерода до формиата в кислом электролите в сажевом газодиффузионном электроде со свинцовым катализатором // Электрохимия. 2023. Т. 59. № 10. С. 606–609 https://doi.org/10.31857/S0424857023100092 https://www.elibrary.ru/whwhtl @@Kolyagin G. A., Taran O. P. Carbon dioxide electroreduction to formate in acid electrolytes in the acetylene black gas-diffusion electrode with lead catalyst // Russ. J. Electrochem. 2023. V. 59. N 10 P. 764–766 https://doi.org/10.1134/S1023193523100087
- 32. Shitrit Y., Karmel T., Rajput S., Cohen Y. S., Edri E. Catalytic layer microstructure in pulsed electrodeposited bismuth-based gas diffusion electrodes used for CO2 reduction to formate // Energy Fuels. 2025. V. 39. N 12. P. 5965–5973 https://doi.org/10.1021/acs.energyfuels.4c05106
- 33. Husein I., Hadi J. M., Surendar A., Gryzunova N. N., Khairullina R. G., Bokov D. O., Hoi H. T. Bismuth oxide nanostructure supported on Cu foam as efficient electrocatalyst toward carbon dioxide electroreduction // Ionics. 2023. V. 29. N 8. P. 3212– 3223. https://doi.org/10.1007/s11581-023-05000-3
- 34. Cao X., Wulan B., Wang Y., Ma J., Hou S., Zhang J. Atomic bismuth induced ensemble sites with indium towards highly efficient and stable electrocatalytic reduction of carbon dioxide // Sci. Bull. 2023. V. 68 N 10. P. 1008–1016 https://doi.org/10.1016/j.scib.2023.04.026
- 35. Song D., Zhang S., Ning H., Fei X., Wang M., Wang X., Wu W., Zhao Q., Li Y., Wu M. Self-supporting BiCu/ carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate // Sci. China Mater 2024. V. 67. N 3. P. 788–795 https://doi.org/10.1007/s40843-023-2742-9
- 36. Wang P., Wang X., Chandra S., Lielpetere A., Quast T., Conzuelo F., Schuhmann W. Hybrid enzymeelectrocatalyst cascade modified gas-diffusion electrodes for methanol formation from carbon dioxide // Angew. Chem. Int. Ed. 2025. V. 64. N 12 ID e202422882 https://doi.org/10.1002/anie.202422882
- 37. Díaz-Sainz G., Fernández-Caso K., Ávila-Bolívar B., Montiel V., Solla-Gullón J., Alvarez-Guerra M., Irabien A. Advances in the development of innovative Bi-Sn-Sb-based gas diffusion electrodes for continuous CO2 electroreduction to formate // J. CO2 Util. 2025 V. 95. ID 103070 https://doi.org/10.1016/j.jcou.2025.103070
- 38. Medvedev J. J., Tracey C., Engelhardt H., Steksova Y., Krivoshapkin P., Krivoshapkina E., Klinkova A Hands-on electrochemical reduction of CO2: Understanding electrochemical principles through active learning // J. Chem. Educ. 2022. V. 99. N 2 P. 1036–1043 https://doi.org/10.1021/acs.jchemed.1c01004
- 39. Rawat K. S., Mahata A., Pathak B. Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: Role of solvent towards product selectivity // J. Catal. 2017. V. 349. P. 118–127 https://doi.org/10.1016/j.jcat.2017.03.011
- 40. Rufer S., Nitzsche M., Garimella S., Lake J., Varanasi K. K. Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis // ChemRxiv. 2023 https://doi.org/10.26434/chemrxiv-2023-c2zz0
- 41. Nabil S. K., Roy S., Algozeeb W. A., Al-Attas T., Bari M. A. A., Zeraati A. S. Kannimuthu K., Demingos P. G., Rao A., Tran T. N., Wu X., Bollini P., Lin H., Singh C. V., Tour J. M., Ajayan P. M., Kibria M. G. Bifunctional gas diffusion electrode enables in situ separation and conversion of CO2 to ethylene from dilute stream // Adv. Mater. 2023. V. 35 N 24. ID. 2300389 https://doi.org/10.1002/adma.202300389
- 42. Xu Z., Xie Y., Wang Y. Pause electrolysis for acidic CO2 reduction on 3-dimensional Cu // Mater. Rep. Energy 2023. V. 3. N 1. ID 100173 https://doi.org/10.1016/j.matre.2022.100173
- 43. Bian L., Zhang Z. Y., Tian H., Tian N. N., Ma Z., Wang Z. L. Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4 // Chin. J. Catal. 2023. V. 54. P. 199–211 https://doi.org/10.1016/S1872-2067 (23)64540-1
- 44. Rihm S. D., Kovalev M. K., Lapkin A. A., Ager J. W., Kraft M. On the role of C4 and C5 products in electrochemical CO2 reduction via copper-based catalysts // Energy Environ. Sci. 2023. V. 16. N 4 P. 1697–1710. https://doi.org/10.1039/D2EE03752A
- 45. Lyu X., Li J., Zhang T., Li Z., Hwang I. H., Sun C., Jafta C. J., Yang J., Toops T. J., Cullen D. A., Serov A., Wu J. Revealing the activity and selectivity of ppm level copper in gas diffusion electrodes towards CO and CO2 electroreduction // EES Catal. 2023. V. 1. N 2 P. 117–124. https://doi.org/10.1039/D2EY00071G
- 46. Wang X., Miao M., Tang B., Duan H., Zhu F., Zhang H., Zhang X., Yin W.-J., Fu Y. Chlorineinduced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene // Nano Res. 2023. V. 16. N 7. P. 8827–8835 https://doi.org/10.1007/s12274-023-5554-9
- 47. Vichou E., Perazio A., Adjez Y., Gomez-Mingot M., Schreiber M. W., Sánchez-Sánchez C. M., Fontecave M. Tuning selectivity of acidic carbon dioxide electrolysis via surface modification // Chem Mater. 2023. V. 35. N 17. P. 7060–7068 https://doi.org/10.1021/acs.chemmater.3c01326
- 48. Takamatsu D., Fukatani N., Yoneyama A., Hirano T., Hirai K., Yabuuchi S., Watanabe K., Kamiya K., Nakanishi S. Dynamic relocation of copper catalysts in gas diffusion electrodes during CO2 electroreduction // J. Am. Chem. Soc. 2025. V. 147. N 27. P. 24103– 24112. https://doi.org/10.1021/jacs.5c07944
- 49. Sanjuán I., Kumbhar V., Prymak O., Ulbricht M., Andronescu C., Fischer L. Intrinsically conductive and Cu-functionalized polymer-composite membranes as gas diffusion electrodes for CO2 electroreduction // ChemSusChem. 2025. V. 18. N 2. ID e202401228 https://doi.org/10.1002/cssc.202401228
- 50. Rabiee H., Heffernan J. K., Ge L., Zhang X., Yan P., Marcellin E., Hu S., Zhu Z., Wang H., Yuan Z. Tuning flow-through Cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+ products // Appl. Catal. B: Environmental. 2023. V. 330. ID 122589 https://doi.org/10.1016/j.apcatb.2023.122589
- 51. Hejazi S. A., Taghipour F. Polytetrafluoroethylenebased gas diffusion electrode for electrochemical generation of hydrogen peroxide // Electrochim. Acta 2023. V. 439. ID 141695 https://doi.org/10.1016/j.electacta.2022.141695
- 52. Zhang Y., Mascaretti L., Melchionna M., Henrotte O., Kment S., Fornasiero P., Naldoni A. Thermoplasmonic in situ fabrication of nanohybrid electrocatalysts over gas diffusion electrodes for enhanced H2O2 electrosynthesis // ACS Catal. 2023. V. 13. N 15. P. 10205– 10216. https://doi.org/10.1021/acscatal.3c01837
- 53. Xia B., Huang Q., Wu K., Jiang L., Li M., Yu L., Ding S., Nie Z., Hua D., Duan J., Chen S. Dynamic gas-diffusion electrodes for oxygen electroreduction to hydrogen peroxide // AIChE J. 2023. V. 69. N 5 ID e18022. https://doi.org/10.1002/aic.18022
- 54. Zhou W., Xie L., Wang Y., Ding Y., Meng X., Sun F. Gao J., Zhao G. Oxygen-rich hierarchical activated coke-based gas diffusion electrode enables highly efficient H2O2 synthesis via O2 electroreduction // Sep Pur. Tech. 2023. V. 307. ID 122740 https://doi.org/10.1016/j.seppur.2022.122740
- 55. Li M., Zhu Z., Yuan S., Ji L., Zhao T., Gao Y., Wang H Nitrogen and oxygen co-doped graphite felt gas diffusion electrodes for efficient hydrogen peroxide electrosynthesis // Mol. Catal. 2023. V. 541. ID 113076 https://doi.org/10.1016/j.mcat.2023.113076
- 56. Ri K., Pak S., Sun D., Zhong Q., Yang S., Sin S., Wu L., Sun Y., Cao H., Han C., Xu C., Liu Y., He H., Li S., Sun C. Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air // Appl. Catal. B: Environmental. 2024. V. 343. ID 123471 https://doi.org/10.1016/j.apcatb.2023.123471
- 57. Cui L., Chen B., Zhang L., He C., Shu C., Kang H., Qiu J., Jing W., Ostrikov K. K., Zhang Z. An anti-electrowetting carbon film electrode with self-sustained aeration for industrial H2O2 electrosynthesis // Energy Environ. Sci. 2024. V. 17 N 2. P. 655–667. https://doi.org/10.1039/D3EE03223J
- 58. Hübner J. L., Ruland G., Pietschmann F., Brejwo Z., Paul B., Strasser P. Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes // Chem 2025. V. 11. N 4. ID 102363 https://doi.org/10.1016/j.chempr.2024.11.001
- 59. Wang L., Liu S., Meng J., Song M., Jiao M., Jiang H., Chen Y. Electrocatalytic lignin valorization via enhanced H2O2 generation using a MWNCT-modified gas diffusion electrode // ChemPlusChem. 2025. V. 90 N 5. ID e202400769 https://doi.org/10.1002/cplu.202400769
- 60. Zhang S., Mou Y., Zhou Y., Tong H., Gong H., He Y., Shen W., Li J. Hydrogen peroxide in-situ electrosynthesis using micropore-adjusted gas diffusion electrode and application in wastewater // J. Environ. Chem. Eng. 2025. V. 13. N 1. ID 115059 https://doi.org/10.1016/j.jece.2024.115059
- 61. Fu X., Niemann V. A., Zhou Y., Li S., Zhang K., Pedersen J. B., Saccoccio M., Andersen S. Z., Enemark-Rasmussen K., Benedek P., Xu A., Deissler N. H., Mygind J. B. V., Nielander A. C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Jaramillo T. F., Chorkendorff I. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis // Nat. Mater. 2024. V. 23. N 1. P. 101–107 https://doi.org/10.1038/s41563-023-01702-1
- 62. Fu X., Pedersen J. B., Zhou Y., Saccoccio M., Li S., Sažinas R., Katja L., Andersen S. Z., Xu A., Deissler N. H., Mygind J. B. V., Wie C., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., Chorkendorff I Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation // Science 2023. V. 379. N 6633. P. 707–712 https://doi.org/10.1126/science.adf4403
- 63. He Y., Wang M., Liu S., Zhang L., Cheng Q., Yan C., Qian T. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia // Chem. Eng. J. 2023. V. 454 ID 140106. https://doi.org/10.1016/j.cej.2022.140106
- 64. Xiao L., Mou S., Dai W., Yang W., Cheng Q., Liu S., Dong F. Identification of Cu(111) as superior active sites for electrocatalytic NO reduction to NH3 with high single-pass conversion efficiency // Angew Chem. Int. Ed. 2024. V. 63. N 11. ID e202319135 https://doi.org/10.1002/anie.202319135
- 65. Nwabueze Q. A., Leggett S. Advancements in the application of CO2 capture and utilization technologies — A comprehensive review // Fuels 2024. V. 5. N 3. P. 508–532 https://doi.org/10.3390/fuels5030028
- 66. Fu L., Ren Z., Si W., Ma Q., Huang W., Liao K., Huang Z., Wang Y., Li J., Xu P. Research progress on CO2 capture and utilization technology // J. CO2 Util 2022. V. 66. ID 102260 https://doi.org/10.1016/j.jcou.2022.102260
- 67. Moinee A. A., Rownaghi A. A., Rezaei F. Process development and techno-economic analysis for combined and separated CO2 capture-electrochemical utilization // Chem. Eng. J. 2024. V. 499. ID 155909 https://doi.org/10.1016/j.cej.2024.155909
- 68. Zhang W., Yang Y., Li Y., Li F., Luo M. Recent progress on integrated CO2 capture and electrochemical upgrading // Mater. Today Catal. 2023. V. 2 ID 100006 https://doi.org/10.1016/j.mtcata.2023.100006
- 69. Wen G., Ren B., Liu Y., Dong S., Luo D., Jin M., Wang X., Yu A., Chen Z. Bridging trans-scale electrode engineering for mass CO2 electrolysis // JACS Au 2023. V. 3. N 8. P. 2046–2061 https://doi.org/10.1021/jacsau.3c00174
- 70. Burungale V. V., Gaikwad M. A., Bae H., Mane P., Heo J., Seong C., Kim J. H., Oh J., Ha J. S. Advances in gas diffusion electrode technology for electrochemical CO2 reduction: Innovations, challenges, and future directions // Mater. Sci. Eng. R: Reports. 2025. V. 166. ID 101064 https://doi.org/10.1016/j.mser.2025.101064