- Код статьи
- S30345545S0044461825090072-1
- DOI
- 10.7868/S3034554525090072
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 98 / Номер выпуска 11-12
- Страницы
- 627-637
- Аннотация
- Углекислый газ представляет собой перспективный реагент для синтеза широкого круга ценных химических продуктов, в частности метанола. В настоящей работе впервые на основе как немодифицированных, так и модифицированных аминогруппами пористых ароматических каркасов синтезированы Cu/Zn-катализаторы для гидрирования CO в метанол. Рассмотрена взаимосвязь текстурных характеристик носителя и формирующихся в его структуре наночастиц активной фазы. Активность синтезированных в работе катализаторов исследована при 250°C и 40 атм (CO/H = 1:3). Определен оптимальный состав катализатора, изучено влияние природы растворителя на его активность.
- Ключевые слова
- катализ метанол углекислый газ гидрирование пористые ароматические каркасы
- Дата публикации
- 31.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 50
Библиография
- 1. Агакама Н., Aresta M., Armor J. N., Barteau M. A., Beckman E. J., Bell A. T., Bereaw J. E., Creutz C., Dinjus E., Dixon D. A., Domen K., DuBois D. L., Eckert J., Fujita E., Gibson D. H., Goddard W. A., Goodman D. W., Keller J., Kubas G. J., Kung H. H., Lyons J. E., Manzer L. E., Marks T. J., Morokuma K., Nicholas K. M., Periana R., Que L., Rostrup-Nielson J., Sachtler W. M. H., Schmidt L. D., Sen A., Somorjai G. A., Stair P. C., Stults B. R., Tumas W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities // Chem. Rev. 2001. V. 101. N 4. P. 953–996. https://doi.org/10.1021/cr000018s
- 2. Bulushev D. A., Ross J. R. H. Heterogeneous catalysts for hydrogenation of CO and bicarbonates to formic acid and formates // Catal. Rev. Sci. Eng. 2018. V. 60. N 4. P. 566–593. https://doi.org/10.1080/01614940.2018.1476806
- 3. Максимов А. Л., Беленкая И. П. Диоксид углерода и «метанольная» экономика: Достижения в каталитическом синтезе метанола из СО // Успехи химии. 2024. Т. 93. № 1. С. RCR5101. https://doi.org/10.59761/RCR5101 @@ Maksimov A. L., Beletskaya I. P. Carbon dioxide and «methanol» economy: Advances in the catalytic synthesis of methanol from CO // Russ. Chem. Rev. 2024. V. 93. N 1. https://doi.org/10.59761/RCR5101
- 4. Tedeeva M. A., Kustov A. L., Batkin A. M., Garifullina C., Zalyardinov A. A., Yang D., Dai Y., Yang Y., Kustov L. M. Catalytic systems for hydrogenation of CO to methanol // Mol. Catal. 2024. V. 566. P. 114403. https://doi.org/10.1016/j.mcat.2024.114403
- 5. Cui X., Kerr S. K. Thermodynamic analyses of a moderate-temperature process of carbon dioxide hydrogenation to methanol via reverse water-gas shift with in situ water removal // Ind. Eng. Chem. Res. 2019. V. 58. N 24. P. 10559–10569. https://doi.org/10.1021/acs.iecr.9b01312
- 6. Ortner N., Zhao D., Mena H., Weij B., Lund H., Bartling S., Wohlrab S., Armbruster U., Kondratenko E. V. Revealing origins of methanol selectivity loss in CO hydrogenation over CuZn-containing catalysts // ACS Catal. 2023. V. 13. N 1. P. 60–71. https://doi.org/10.1021/acscatal.2c04480
- 7. Zhang Y., Zhong L., Wang H., Gao P., Li X., Xiao S., Ding G., Wei W., Sun Y. Catalytic performance of spray-dried Cu/ZnO/AlO/ZrO catalysts for slurry methanol synthesis from CO hydrogenation // J. CO Util. 2016. V. 15. P. 72–82. https://doi.org/10.1016/J.JCOU.2016.01.005
- 8. Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu H., Wang H., Wei W., Sun Y. Slurry methanol synthesis from CO hydrogenation over micro-spherical SiO support Cu/ZnO catalysts // J. CO Util. 2018. V. 26. P. 642–651. https://doi.org/10.1016/J.JCOU.2018.06.023
- 9. Lee K. H., Lee J. S. Effects of catalyst composition on methanol synthesis from CO/H // Korean J. Chem. Eng. 1995. V. 12. N 4. P. 460–465. https://doi.org/10.1007/BF02705811
- 10. Singh R., Tripathi K., Pant K. K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO catalyst during CO hydrogenation // Fuel. 2021. V. 303. P. 121289. https://doi.org/10.1016/J.FUEL.2021.121289
- 11. Belgamwar R., Verma R., Das T., Chakraborty S., Sarawade P., Polshettiwar V. Defects tune the strong metal-support interactions in copper supported on defected titanium dioxide catalysts for CO reduction // J. Am. Chem. Soc. 2023. V. 56. N 2. P. 274–278. https://doi.org/10.1021/jacs.3c01336
- 12. Wang J., Zhang Y., Ma Y., Yin J., Wang Y., Fan Z. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials // ACS Mater. Lett. 2022. V. 4. N 11. P. 2058–2079. https://doi.org/10.1021/acsmaterialstett.2c00751
- 13. Wang C., Kosari M., Xi S., Zeng H. C. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO hydrogenation to methanol // Adv. Funct. Mater. 2023. V. 33. N 13. P. 109–118. https://doi.org/10.1002/adfm.202212478
- 14. Zhou H., Chen Z., Lopez A. V., Lopez E. D., Lam E., Tsoukalou A., Willinger E., Kuznetsov D. A., Mance D., Kierzkowska A., Donat F., Abdala P. M., Comas-Vives A., Copéret C., Fedorov A., Müller C. R. Engineering the Cu/MoC–T (MXene) interface to drive CO hydrogenation to methanol // Nat. Catal. 2021. V. 4. N 10. P. 860–871. https://doi.org/10.1038/s41929-021-00684-0
- 15. Tian Y., Zhu G. Porous aromatic frameworks (PAFs) // Chem. Rev. 2020. V. 120. N 16. P. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687
- 16. Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catal. Today. 2020. V. 357. P. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028
- 17. Kulikov L., Dubniuk A., Makeeva D., Egazaryanis S., Maximov A., Karakhanov E. Ruthenium catalysts based on porous aromatic frameworks synthesized by modified impregnation methods for hydrogenation of levulinic acid and its esters // Mater. Today Sustain. 2024. V. 25. P. 100637. https://doi.org/10.1016/j.mtsust.2023.100637
- 18. Hei Z.-H., Huang M.-H., Luo Y., Wang Y. A well-defined nitro-functionalized aromatic framework (NO-PAF-1) with high CO adsorption: Synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer // Polym. Chem. 2016. V. 7. N 4. P. 770–774. https://doi.org/10.1039/CSPY016826
- 19. Makeeva D., Kulikov L., Zolonikhina A., Maximov A., Karakhanov E. Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis // Mol. Catal. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
- 20. Makeeva D. A., Kulikov L. A., Oskina E. D., Uvarov O. V., Maximov A. L., Karakhanov E. A. Palladium catalysts based on nitrogen-containing porous aromatic frameworks for hydrogenation of unsaturated compounds // Petrol. Chem. 2022. V. 62. N 10. P. 1183–1194. https://doi.org/10.1134/S0965544122090092
- 21. Bazhenova M., Kulikov L. A., Bolnykh Y. S., Maksimov A. L., Karakhanov E. A. Palladium catalysts based on porous aromatic frameworks for vanillin hydrogenation: Tuning the activity and selectivity by introducing functional groups // Catal. Commun. 2022. V. 170. P. 106486. https://doi.org/10.1016/j.catcom.2022.106486
- 22. Heldebrandt D. J., Koech P. K., Glezakou V.-A., Rousseau R., Malhotra D., Cantu D. C. Water-lean solvents for post-combustion CO capture: Fundamentals, uncertainties, opportunities, and outlook // Chem. Rev. 2017. V. 117. N 14. P. 9594–9624. https://doi.org/10.1021/acs.chemrev.6b00768
- 23. Alenazi M. H., Helal A., Khan M. Y., Khalil A., Khan A., Usman M., Zahir M. H. Covalent organic frameworks (COFs) for CO utilizations // Carbon Capture Sci. Technol. 2025. V. 14. N January. P. 100365. https://doi.org/10.1016/j.ccst.2025.100365
- 24. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. N 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- 25. Kothandaraman J., Heldebrant D. J. Towards environmentally benign capture and conversion: Heterogeneous metal catalyzed CO hydrogenation in CO capture solvents // Green Chem. 2020. V. 22. N 3. P. 828–834. https://doi.org/10.1039/c9ge03449h