ОХНМЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ГИДРИРОВАНИЕ СО С ИСПОЛЬЗОВАНИЕМ Cu/Zn-КАТАЛИЗАТОРОВ НА ОСНОВЕ ПОРИСТЫХ АРОМАТИЧЕСКИХ КАРКАСОВ

Код статьи
S30345545S0044461825090072-1
DOI
10.7868/S3034554525090072
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 98 / Номер выпуска 11-12
Страницы
627-637
Аннотация
Углекислый газ представляет собой перспективный реагент для синтеза широкого круга ценных химических продуктов, в частности метанола. В настоящей работе впервые на основе как немодифицированных, так и модифицированных аминогруппами пористых ароматических каркасов синтезированы Cu/Zn-катализаторы для гидрирования CO в метанол. Рассмотрена взаимосвязь текстурных характеристик носителя и формирующихся в его структуре наночастиц активной фазы. Активность синтезированных в работе катализаторов исследована при 250°C и 40 атм (CO/H = 1:3). Определен оптимальный состав катализатора, изучено влияние природы растворителя на его активность.
Ключевые слова
катализ метанол углекислый газ гидрирование пористые ароматические каркасы
Дата публикации
31.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
50

Библиография

  1. 1. Агакама Н., Aresta M., Armor J. N., Barteau M. A., Beckman E. J., Bell A. T., Bereaw J. E., Creutz C., Dinjus E., Dixon D. A., Domen K., DuBois D. L., Eckert J., Fujita E., Gibson D. H., Goddard W. A., Goodman D. W., Keller J., Kubas G. J., Kung H. H., Lyons J. E., Manzer L. E., Marks T. J., Morokuma K., Nicholas K. M., Periana R., Que L., Rostrup-Nielson J., Sachtler W. M. H., Schmidt L. D., Sen A., Somorjai G. A., Stair P. C., Stults B. R., Tumas W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities // Chem. Rev. 2001. V. 101. N 4. P. 953–996. https://doi.org/10.1021/cr000018s
  2. 2. Bulushev D. A., Ross J. R. H. Heterogeneous catalysts for hydrogenation of CO and bicarbonates to formic acid and formates // Catal. Rev. Sci. Eng. 2018. V. 60. N 4. P. 566–593. https://doi.org/10.1080/01614940.2018.1476806
  3. 3. Максимов А. Л., Беленкая И. П. Диоксид углерода и «метанольная» экономика: Достижения в каталитическом синтезе метанола из СО // Успехи химии. 2024. Т. 93. № 1. С. RCR5101. https://doi.org/10.59761/RCR5101 @@ Maksimov A. L., Beletskaya I. P. Carbon dioxide and «methanol» economy: Advances in the catalytic synthesis of methanol from CO // Russ. Chem. Rev. 2024. V. 93. N 1. https://doi.org/10.59761/RCR5101
  4. 4. Tedeeva M. A., Kustov A. L., Batkin A. M., Garifullina C., Zalyardinov A. A., Yang D., Dai Y., Yang Y., Kustov L. M. Catalytic systems for hydrogenation of CO to methanol // Mol. Catal. 2024. V. 566. P. 114403. https://doi.org/10.1016/j.mcat.2024.114403
  5. 5. Cui X., Kerr S. K. Thermodynamic analyses of a moderate-temperature process of carbon dioxide hydrogenation to methanol via reverse water-gas shift with in situ water removal // Ind. Eng. Chem. Res. 2019. V. 58. N 24. P. 10559–10569. https://doi.org/10.1021/acs.iecr.9b01312
  6. 6. Ortner N., Zhao D., Mena H., Weij B., Lund H., Bartling S., Wohlrab S., Armbruster U., Kondratenko E. V. Revealing origins of methanol selectivity loss in CO hydrogenation over CuZn-containing catalysts // ACS Catal. 2023. V. 13. N 1. P. 60–71. https://doi.org/10.1021/acscatal.2c04480
  7. 7. Zhang Y., Zhong L., Wang H., Gao P., Li X., Xiao S., Ding G., Wei W., Sun Y. Catalytic performance of spray-dried Cu/ZnO/AlO/ZrO catalysts for slurry methanol synthesis from CO hydrogenation // J. CO Util. 2016. V. 15. P. 72–82. https://doi.org/10.1016/J.JCOU.2016.01.005
  8. 8. Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu H., Wang H., Wei W., Sun Y. Slurry methanol synthesis from CO hydrogenation over micro-spherical SiO support Cu/ZnO catalysts // J. CO Util. 2018. V. 26. P. 642–651. https://doi.org/10.1016/J.JCOU.2018.06.023
  9. 9. Lee K. H., Lee J. S. Effects of catalyst composition on methanol synthesis from CO/H // Korean J. Chem. Eng. 1995. V. 12. N 4. P. 460–465. https://doi.org/10.1007/BF02705811
  10. 10. Singh R., Tripathi K., Pant K. K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO catalyst during CO hydrogenation // Fuel. 2021. V. 303. P. 121289. https://doi.org/10.1016/J.FUEL.2021.121289
  11. 11. Belgamwar R., Verma R., Das T., Chakraborty S., Sarawade P., Polshettiwar V. Defects tune the strong metal-support interactions in copper supported on defected titanium dioxide catalysts for CO reduction // J. Am. Chem. Soc. 2023. V. 56. N 2. P. 274–278. https://doi.org/10.1021/jacs.3c01336
  12. 12. Wang J., Zhang Y., Ma Y., Yin J., Wang Y., Fan Z. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials // ACS Mater. Lett. 2022. V. 4. N 11. P. 2058–2079. https://doi.org/10.1021/acsmaterialstett.2c00751
  13. 13. Wang C., Kosari M., Xi S., Zeng H. C. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO hydrogenation to methanol // Adv. Funct. Mater. 2023. V. 33. N 13. P. 109–118. https://doi.org/10.1002/adfm.202212478
  14. 14. Zhou H., Chen Z., Lopez A. V., Lopez E. D., Lam E., Tsoukalou A., Willinger E., Kuznetsov D. A., Mance D., Kierzkowska A., Donat F., Abdala P. M., Comas-Vives A., Copéret C., Fedorov A., Müller C. R. Engineering the Cu/MoC–T (MXene) interface to drive CO hydrogenation to methanol // Nat. Catal. 2021. V. 4. N 10. P. 860–871. https://doi.org/10.1038/s41929-021-00684-0
  15. 15. Tian Y., Zhu G. Porous aromatic frameworks (PAFs) // Chem. Rev. 2020. V. 120. N 16. P. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687
  16. 16. Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catal. Today. 2020. V. 357. P. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028
  17. 17. Kulikov L., Dubniuk A., Makeeva D., Egazaryanis S., Maximov A., Karakhanov E. Ruthenium catalysts based on porous aromatic frameworks synthesized by modified impregnation methods for hydrogenation of levulinic acid and its esters // Mater. Today Sustain. 2024. V. 25. P. 100637. https://doi.org/10.1016/j.mtsust.2023.100637
  18. 18. Hei Z.-H., Huang M.-H., Luo Y., Wang Y. A well-defined nitro-functionalized aromatic framework (NO-PAF-1) with high CO adsorption: Synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer // Polym. Chem. 2016. V. 7. N 4. P. 770–774. https://doi.org/10.1039/CSPY016826
  19. 19. Makeeva D., Kulikov L., Zolonikhina A., Maximov A., Karakhanov E. Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis // Mol. Catal. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
  20. 20. Makeeva D. A., Kulikov L. A., Oskina E. D., Uvarov O. V., Maximov A. L., Karakhanov E. A. Palladium catalysts based on nitrogen-containing porous aromatic frameworks for hydrogenation of unsaturated compounds // Petrol. Chem. 2022. V. 62. N 10. P. 1183–1194. https://doi.org/10.1134/S0965544122090092
  21. 21. Bazhenova M., Kulikov L. A., Bolnykh Y. S., Maksimov A. L., Karakhanov E. A. Palladium catalysts based on porous aromatic frameworks for vanillin hydrogenation: Tuning the activity and selectivity by introducing functional groups // Catal. Commun. 2022. V. 170. P. 106486. https://doi.org/10.1016/j.catcom.2022.106486
  22. 22. Heldebrandt D. J., Koech P. K., Glezakou V.-A., Rousseau R., Malhotra D., Cantu D. C. Water-lean solvents for post-combustion CO capture: Fundamentals, uncertainties, opportunities, and outlook // Chem. Rev. 2017. V. 117. N 14. P. 9594–9624. https://doi.org/10.1021/acs.chemrev.6b00768
  23. 23. Alenazi M. H., Helal A., Khan M. Y., Khalil A., Khan A., Usman M., Zahir M. H. Covalent organic frameworks (COFs) for CO utilizations // Carbon Capture Sci. Technol. 2025. V. 14. N January. P. 100365. https://doi.org/10.1016/j.ccst.2025.100365
  24. 24. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. N 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  25. 25. Kothandaraman J., Heldebrant D. J. Towards environmentally benign capture and conversion: Heterogeneous metal catalyzed CO hydrogenation in CO capture solvents // Green Chem. 2020. V. 22. N 3. P. 828–834. https://doi.org/10.1039/c9ge03449h
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека