RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ СИНТЕЗИРОВАННЫХ in situ МЕДЬ-ЦИНКОВЫХ КАТАЛИЗАТОРОВ ГИДРОДЕОКСИГЕНАЦИИ ГЛИЦЕРИНА ДО 1,2-ПРОПАНДИОЛА

PII
S30345545S0044461825040016-1
DOI
10.7868/S3034554525040016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 4
Pages
238-254
Abstract
Исследованы структурные особенности синтезированных in situ в условиях жидкофазного гидрогенолиза глицерина до 1,2-пропандиола медь-цинковых катализаторов с различным содержанием меди (от 6.25 до 100 мас%). Установлено, что проведение процесса формирования катализатора в реакционной среде в диапазоне концентраций 12.5–25 мас% Cu обеспечивает как достижение минимальных размеров Cu-зерен (50–150 нм), устойчивый анизотропный рост ZnO (длина 80–230 нм), так и формирование тонкой оксидной оболочки на поверхности частиц Cu. Результатом является максимальная каталитическая активность и селективность формирующейся in situ каталитической системы.
Keywords
Date of publication
31.12.2025
Year of publication
2025
Number of purchasers
0
Views
67

References

  1. 1. Ten Dam J., Hanefeld U. Renewable chemicals: Dehydroxylation of glycerol and polyols // ChemSusChem. 2011. V. 4. P 1017-1034. https://doi.org/10.1002/cssc.201100162
  2. 2. Bienholz A., Hofmann H., Claus P. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst's activity // Appl. Catal. A: General. 2011. V. 391 (1). P 153-157. https://doi.org/10.1016/j.apcata.2010.08.047
  3. 3. Zhu S., Gao X., Zhu Y., Fan W., Wang J., Li Y. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol // Catal. Sci. Technol. 2015. V. 5 (2). P 1169-1180. https://doi.org/10.1039/c4cy01148a
  4. 4. Huang Z., Cui F., Kang H., Chen J., Xia C. Characterization and catalytic properties of the CuO/ SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium // Appl. Catal. A: General. 2009. V. 366 (2). P. 288-298. https://doi.org/10.1016/j. apcata.2009.07.017
  5. 5. LiX., XiangM., Wu D. Hydrogenolysis of glycerol over bimetallic CuNi catalysts supported on hierarchically porous SAPO-11 zeolite // Catal. Commun. 2019. V. 119. P 170-175. https://doi.org/10.1016/j .catcom.2018.11.004
  6. 6. Niu L., Wei R., Jiang F., Zhou M., Liu C., Xiao G. Selective hydrogenolysis of glycerol to 1,2-propanediol on the modified ultrastable Y-type zeolite dispersed copper catalyst // React. Kinet. Mech. Catal. 2014. V. 113 (2). P. 543-556. https://doi.org/10.1007/s11144-014-0745-8
  7. 7. Kant A., He Y., Jawad A., Li X., Rezaei F, Smith J. D., Rownaghi A.A. Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta // Chem. Eng. J. 2017. V 317. P 1-8. https://doi.org/10.1016/j .cej .2017.02.064
  8. 8. Mane R., Potdar A., Jeon Y., Rode C. Calcination temperature impacting the structure and activity of CuAl catalyst in aqueous glycerol hydrogenolysis to 1,2-propanediol // Top. Catal. 2025. V. 68. 318-331. https://doi.org/10.1007/s11244-024-02032-5
  9. 9. Zhao H., Zheng L., Li X., Chen P., Hou Z. Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: A short review // Catal. Today. 2020. V. 355. P. 84-95. https://doi.org/10.1016/j .cattod.2019.03.011
  10. 10. Mane R., Jeon Y., Rode C. A. A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen // Green Chem. 2022. V. 24 (18). P 6751-6781. https://doi.org/10.1039/D2GC01879A
  11. 11. Du Y., Wang C., Jiang H., Chen C., Chen R. Insights into deactivation mechanism of Cu-ZnO catalyst in hydrogenolysis of glycerol to 1,2-propanediol // J. Ind. Eng. Chem. 2016. V. 35. P 262-267. https://doi.org/10.1016/j jiec.2016.01.002
  12. 12. Balaraju M., Rekha V., Sai Prasad P. S., Prasad R. B. N., Lingaiah N. Selective hydrogenolysis of glycerol to 1,2-propanediol over Cu-ZnO catalysts // Catal. Lett. 2008. V. 126. P. 119-124. https://doi.org/10.1007/s10562-008-9590-6
  13. 13. Omar L., Perret N., Daniele S. Self-assembled hybrid ZnO nanostructures as supports for copper-based catalysts in the hydrogenolysis of glycerol // Catalysts. 2021. V 11. P. 516. https://doi.org/10.3390/catal11040516
  14. 14. Gao Q., Xu B., Tong Q., Fan Y. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu-ZnO catalysts in fixed-bed reactor // Biosci. Biotechnol. Biochem. 2015. V. 80. P 215-220. https://doi.org/10.1080/09168451.2015.1088372
  15. 15. Meher L. C., Gopinath R., Naik S. N., Dalai A. K. Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor // Ind. Eng. Chem. Res. 2009. V. 48. P. 1840-1846. https://doi.org/10.1021/ie8011424
  16. 16. Wang S., Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts // Catal. Lett. 2007. V 117. P 62-67. https://doi.org/10.1007/s10562-007-9106-9
  17. 17. PorukovaI., Samoilov V., Lavrentev V., RamazanovD., Maximov A. Hydrogenolysis of bio-glycerol over in situ generated nanosized Cu-ZnO catalysts // Catalysts. 2024. V. 14. P 908. https://doi.org/10.3390/catal14120908
  18. 18. PorukovaI., Samoilov V., RamazanovD., KniazevaM., Maximov A. In situ-generated, dispersed cu catalysts for the catalytic hydrogenolysis of glycerol // Molecules. 2022. V. 27. P 8778. https://doi.org/10.3390/molecules27248778
  19. 19. Albertsso J., Abrahams S. C., Kvick A. Structural and thermal dependence of normal-mode condensations in K2TeBr6 // Acta Crystallogr. B. 1989. V. 45. P 34-40. https://doi.org/10.1107/S0108768188010109
  20. 20. Vainshtein B. K., Zuyagin B. B., Avilov A. S. // Electron Diffraction Techniques / Ed. by J. M. Cowley. Oxford Univ. Press, Oxford, 1992. V 1. Chap. 6. P 216.
  21. 21. Якимов И. С., Дубинин П. С., Пиксина О. Е. Регуляризация метода ссылочных интенсивностей для количественного рентгенофазового анализа поликристаллов // Журн. Сиб. фед. ун-та. Химия. 2009. Т. 2. С. 71-80.
  22. 22. Kirfel A., Eichhorn K. D. Accurate structure analysis with synchrotron radiation // Acta Crystallogr. A. 1990. V. 46 (4). P 271-284. https://doi.org/10.1107/s0108767389012596
  23. 23. Schmahl N. G., Eikerling G .F. Ueber kryptomodifikationen des Cu(II)-oxids // Zeitschrift fuer Physikalische Chemie (Frankfurt Am Main). 1968. V. 62. P 268-279. https://doi.org/10.1524/zpch.1968.62.5_6.268
  24. 24. Massarotti V., Capsoni D., Bini M., Altomare A., Moliterni A. G. G. X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: The copper oxide case // Zeitschrift fuer Kristallographie. 1998. V. 213. P 259-265. https://doi.org/10.1524/zkri. 1998.213.5.259
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library