RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

GAS TRANSPORT PROPERTIES OF POLYNORBORNENES WITH Si—O—C FRAGMENTS IN SUBSTITUENTS (Review)

PII
S30345545S0044461825070018-1
DOI
10.7868/S3034554525070018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 7-8
Pages
412-424
Abstract
The review systematizes and analyzes the literature data on the effect of the structure of Si—O—C fragments in the side substituents of addition and metathesis polynorbornenes on their gas transport properties. The influence of the number and nature of alkoxysilyl groups, the length of alkyl and alkoxy fragments, the degree of branching of substituents, the presence of bridging and additional oxygen-containing or fluorine-containing groups is considered. It is shown that the variation of the structure of the organosilicon substituent makes it possible to purposefully change the gas permeability and selectivity of membranes, achieving an optimal combination of these parameters for the tasks of hydrocarbon separation and acid gas (CO, HS) recovery. Thus, the introduction of short alkoxy groups [tris(methoxy)silyl] leads to higher CO permeability and CO/N selectivity compared to polymers with longer substituents, and an increase in the number of oxygen-containing fragments in the substituents leads to an increase in selectivity due to a decrease in N permeability. The presence of fluorine-containing groups promotes an increase in CO solubility and, as a consequence, an increase in CO/CH selectivity. Special attention is paid to the identification of structure-property correlations and the definition of structures that provide high CO permeability while maintaining or increasing CO/N and CO/CH selectivity. The prospects for the use of such polymers for the creation of high-performance membranes and directions for further research are discussed.
Keywords
полинорборнены углекислый газ газоразделение мембраны газотранспортные свойства
Date of publication
31.12.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Yampolskii Y. Gas and vapor transport properties of Sicontaining and related polymers // Membrane Materials for Gas and Vapor Separation. Wiley, Chichester, UK, 2017. P. 271–306 https://doi.org/10.1002/9781119112747.ch8
  2. 2. Финкельштейн Е. Ш., Бермешев М. В., Грингольц М. Л., Старанникова Л. Э., Ямпольский Ю. П. Полимеризация норборненов — путь к созданию новых газоразделительных мембранных ма териалов // Успехи химии. 2011. Т. 80. № 4 С. 362–383 https://doi.org/10.1070/RC2011v080n04ABEH004203 @@Finkelshtein E. S., Bermeshev M. V., Gringolts M. L., Starannikova L. E., Yampolskii Y. P. Substituted polynorbornenes as promising materials for gas separation membranes // Russ. Chem. Rev. 2011. V. 80 N 4. P. 341–361 https://doi.org/10.1070/rc2011v080n04abeh004203
  3. 3. Грингольц М. Л., Бермешев М. В., Старанникова Л. Э., Роган Ю. В., Ямпольский Ю. П., Финкельштейн Е. Ш. Синтез и газоразделительные свойства метатезисных полинорборненов с различным положением одной и двух групп SiMe3 в мономерном звене // Высокомолекуляр. соединения. Сер. A. 2009 Т. 51. № 11. С. 1970–1977 @@Gringolts M. L., Bermeshev M. V., Starannikova L. E., Rogan Yu. V., YampolʹSkii Yu. P., Finkelʹshtein E. Sh. Synthesis and gas separation properties of metathesis polynorbornenes with different positions of one or two SiMe3 groups in a monomer unit // Polym. Sci. Ser. A 2009. V. 51. N 11–12. P. 1233–1240 https://doi.org/10.1134/S0965545X0911008X
  4. 4. Bermeshev M. V., Syromolotov A. V., Starannikova L. E., Gringolts M. L., Lakhtin V. G., Yampolskii Y. P., Finkelshtein E. S. Glassy polynorbornenes with Si—O—Si containing side groups. Novel materials for hydrocarbon membrane separation // Macromolecules 2013. V. 46. P. 8973–8979 https://doi.org/10.1021/ma4021278
  5. 5. Alentiev D. A., Egorova E. S., Bermeshev M. V., Starannikova L. E., Topchiy M. A., Asachenko A. F., Gribanov P. S., Nechaev M. S., Yampolskii Y. P., Finkelshtein E. S. Janus tricyclononene polymers bearing tri(n-alkoxy)silyl side groups for membrane gas separation // J. Mater. Chem. A. 2018. V. 6. P. 19393–19408. https://doi.org/10.1039/C8TA06034G
  6. 6. Maroon C. R., Townsend J., Gmernicki K. R., Harrigan D. J., Sundell B. J., Lawrence J. A., Mahurin S. M., Vogiatzis K. D., Long B. K. Elimination of CO2/N2 Langmuir sorption and promotion of «N2-phobicity» within high-Tg glassy membranes // Macromolecules. 2019. V. 52. P. 1589–1600 https://doi.org/10.1021/acs.macromol.8b02497
  7. 7. Ding Y. Perspective on gas separation membrane materials from process economics point of view // Ind. Eng. Chem. Res. 2020. V. 59. P. 556–568 https://doi.org/10.1021/acs.iecr.9b05975
  8. 8. Sundell B. J., Lawrence J. A., Harrigan D. J., Vaughn J. T., Pilyugina T. S., Smith D. R. Alkoxysilyl functionalized polynorbornenes with enhanced selectivity for heavy hydrocarbon separations // RSC Adv. 2016. V. 6. P. 51619–51628 https://doi.org/10.1039/c6ra10383a
  9. 9. Finkelshtein E., Gringolts M., Bermeshev M., Chapala P., Rogan Y. Polynorbornenes // Membrane Materials for Gas and Vapor Separation. Wiley, Chichester, UK, 2017. P. 143–221
  10. 10. Brunetti A., Melone L., Drioli E., Barbieri G. Sicontaining polymers in membrane gas separation // Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers. 2016. P. 373–398 https://doi.org/10.1002/9781119112747.ch11
  11. 11. Han Y., Winston Ho W. S. Recent developments on polymeric membranes for CO2 capture from flue gas // J. Polym. Eng. 2020. V. 40. N 6. P. 529–542 https://doi.org/10.1515/polyeng-2019-0298
  12. 12. Wang X., Wilson T. J., Alentiev D., Gringolts M., Finkelshtein E., Bermeshev M., Long B. K. Substituted polynorbornene membranes: A modular template for targeted gas separations // Polym. Chem. 2021, V. 12 P. 2947–2977. https://doi.org/10.1039/D1PY00278C
  13. 13. Belov N., Nikiforov R., Starannikova L., Gmernicki K. R., Maroon C. R., Long B. K., Shantarovich V., Yampolskii Y. A. Detailed investigation into the gas permeation properties of addition-type poly(5-triethoxysilyl-2-norbornene) // Eur. Polym. J. 2017. V. 93. P. 602–611 https://doi.org/10.1016/j.eurpolymj.2017.06.030
  14. 14. Guseva M. A., Alentiev D. A., Bakhtin D. S., Borisov I. L., Borisov R. S., Volkov A. V., Finkelshtein E. S., Bermeshev M. V. Polymers based on exo-silicon-substituted norbornenes for membrane gas separation // J. Membr. Sci. 2021. V. 638. ID 119656 https://doi.org/10.1016/j.memsci.2021.119656
  15. 15. Finkelshtein E. S., Makovetskii K. L., Gringolts M. L., Rogan Y. V., Golenko T. G., Starannikova L. E., Yampolskii Y. P., Shantarovich V. P., Suzuki T. Addition-type polynorbornenes with Si(CH3)3 side groups: Synthesis, gas permeability, and free volume // Macromolecules. 2006. V. 39. P. 7022–7029 https://doi.org/10.1021/ma061215h
  16. 16. Gmernicki K. R., Hong E., Maroon C. R., Mahurin S. M., Sokolov A. P., Saito T., Long B. K. Accessing siloxane functionalized polynorbornenes via vinyl-addition polymerization for CO2 separation membranes // ACS Macro Lett. 2016. V. 5. P. 879–883 https://doi.org/10.1021/acsmacrolett.6b00435
  17. 17. Gringolʹs M. L., Bermeshev M. V., Syromolotov A. V., Starannikova L. E., Filatova M. F., Makovetskii K. L., Finkelʹshtein E. S. Highly permeable polymer materials based on silicon-substituted norbornenes // Petrol. Chem. 2010. V. 50. P. 352–361 https://doi.org/10.1134/S0965544110050063
  18. 18. Ал ентьев Д. А., Старанникова Л. Э., Бермешев М. В. Полимеризация трициклононенов с триалкоксисилильными заместителями, содержащими длинные алкильные фрагменты // ЖПХ 2022. Т. 95. № 9. С. 1151–1161 https://doi.org/10.31857/S0044461822090079 @@Alentiev D. A., Starannikova L. E., Bermeshev M. V Polymerization of tricyclononenes contaning trialkoxysilyl substituents with long alkyl fragments // Russ. J. Appl. Chem. 2022. V. 95. N 9. P. 1336–1346 https://doi.org/10.1134/S1070427222090087
  19. 19. Alentiev D. A., Starannikova L. E., Petukhov D. I., Bermeshev M. V. Janus polytricyclononenes with trialkoxysilyl groups containing long alkyl tails for membrane separation of hydrocarbons // Polymer 2024. V. 303. P. 127098 https://doi.org/10.1016/j.polymer.2024.127098
  20. 20. Алентьев Д. А., Петухов Д. И., Бермешев М. В. Разделение смесей газов, содержащих диоксид углерода, с использованием мембран на основе политрициклононенов с триалкоксисилильными группами // ЖПХ. 2023. T. 96. № 5. С. 521–527 https://doi.org/10.31857/S0044461823050109 @@Alentiev D. A., Petukhov D. I., Bermeshev M. V. Separation of gas mixtures containing carbon dioxide using membranes based on polytricyclononenes with trialkoxysilyl groups // Russ. J. Appl. Chem. 2023 V. 96. P. 588–593 https://doi.org/10.1134/S1070427223050117
  21. 21. Maroon C. R., Townsend J., Higgins M. A., Harrigan D. J., Sundell B. J., Lawrence J. A., OʹBrien J. T., OʹNeal D., Vogiatzis K. D., Long B. K. Addition-type alkoxysilyl-substituted polynorbornenes for post-combustion carbon dioxide separations // J Membr. Sci. 2020. V. 595. ID 117532 https://doi.org/10.1016/j.memsci.2019.117532
  22. 22. Андреянов Ф. А., Алентьев Д. А., Бермешев М. В. Синтез и метатезисная полимеризация 5-(триэтилсилоксиметил)норборнена // Высокомолекуляр. соединения. Сер. Б. 2021. V. 63. P. 105–111 https://doi.org/10.31857/S2308113921020029 @@Andreyanov F. A., Alentev D. A., Bermeshev M. V Synthesis and metathesis polymerization of 5-(triethylsiloxymethyl)norbornene // Polym. Sci Ser. B. 2021. V. 63. N 2. P. 109–115 https://10.1134/S1560090421020020
  23. 23. Andreyanov F. A., Alentiev D. A., Lunin A. O., Borisov I. L., Volkov A. V., Finkelshtein E. S., Ren X.-K., Bermeshev M. V. Polymers from organosilicon derivatives of 5-norbornene-2-methanol for membrane gas separation // Polymer. 2022. V. 256 ID 125169 https://doi.org/10.1016/j.polymer.2022.125169
  24. 24. Patel H. A., Hyun Je S., Park J., Chen D. P., Jung Y., Yavuz C. T., Coskun A. Unprecedented hightemperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers // Nat. Commun. 2013 V. 4. ID 1357. https://doi.org/10.1038/ncomms2359
  25. 25. Lawrence J. A., Harrigan D. J., Maroon C. R., Sharber S. A., Long B. K., Sundell B. J. Promoting acid gas separations via strategic alkoxysilyl substitution of vinyl-added poly(norbornene)s // J. Membr. Sci. 2020 V. 616. ID 118569 https://doi.org/10.1016/j.memsci.2020.118569
  26. 26. Swaidan R., Ghanem B., Pinnau I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membranebased air and hydrogen separations // ACS Macro Lett 2015. V. 4. P. 947–951 https://doi.org/10.1021/acsmacrolett.5b00512
  27. 27. Wang X., Wilson T. J., Maroon C. R., Laub J. A., Rheingold S. E., Vogiatzis K. D., Long B. K. Vinyladdition fluoroalkoxysilyl-substituted polynorbornene membranes for CO2/CH4 separation // ACS Appl Polym. Mater. 2022. V. 4. P. 7976–7988 https://doi.org/10.1021/acsapm.1c01833
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library