RAS Chemistry & Material ScienceЖурнал прикладной химии Russian Journal of Applied Chemistry

  • ISSN (Print) 0044-4618
  • ISSN (Online) 3034-5545

ВЛИЯНИЕ МОДИФИКАЦИИ ИОНАМИ Li НА СОРБЦИОННУЮ АКТИВНОСТЬ ЦЕОЛИТА NaX ПО ОТНОШЕНИЮ К КОМПОНЕНТАМ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ

PII
S30345545S0044461825080013-1
DOI
10.7868/S3034554525080013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 9-10
Pages
474-482
Abstract
Журнал прикладной химии, ВЛИЯНИЕ МОДИФИКАЦИИ ИОНАМИ Li НА СОРБЦИОННУЮ АКТИВНОСТЬ ЦЕОЛИТА NaX ПО ОТНОШЕНИЮ К КОМПОНЕНТАМ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ
Keywords
Date of publication
09.10.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Grube T., Hohlein B. Costs of making hydrogen available in supply systems based on renewables // Hydrogen and fuel cell. Heidelberg: Springer, 2016. P. 223–237. https://doi.org/10.1007/978-3-662-44972-1_13
  2. 2. Shabbani H. J. K., Othman M. R., Al-Janabi S. K., Barron A. R., Helwani Z. H2 purification employing pressure swing adsorption process: Parametric and bibliometric review // Int. J. Hydrog. Energy. 2024. V. 50. P. 674–699. https://doi.org/10.1016/j.ijhydene.2023.11.069
  3. 3. Zhang N., Hu S., Xin Q. Optimization of pressure swing adsorption in a three-layered bed for hydrogen purification using machine learning model // Sci. Rep. 2025. V. 15. ID e14193. https://doi.org/10.1038/s41598-025-97139-4
  4. 4. Yang T., Yang Z., Li C., Tong L., Chen B., Li X., Yuan Y., Yuan C., Xiao J. Hydrogen purification performance of pressure swing adsorption in coal-derived activated carbon/zeolite 13X layered bed // Appl. Sci. 2025. V. 15. N 10. ID e5505. https://doi.org/10.3390/app15105505
  5. 5. Li C., Luo H., Yuan Y., Tong L., Chen B., Yang T., Yuan C., Chahine R., Xiao J. Equilibrium and dynamic adsorption characteristics of zeolite 5A, LiX, 13X and MOF UTSA-16 adsorbents for hydrogen purification // Int. J. Hydrog. Energy. 2025. V. 140. P. 889–899. https://doi.org/10.1016/j.ijhydene.2025.04.022
  6. 6. Armbruster T., Gunter M. E. Crystal structure of natural zeolites // Rev. Mineral. Geochem. 2001. V. 45. N 1. P. 1–67. https://doi.org/10.2138/rmg.2001.45.1
  7. 7. Brea P., Delgado J. A., Águeda V. I., Gutiérrez P., Uguina M. A. Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purification // Micropor. Mesopor. Mater. 2019. V. 286. P. 187–198. https://doi.org/10.1016/j.micromeso.2019.05.021
  8. 8. Barrett P. A., Stephenson N. A. Adsorption properties of zeolites // Zeolites and Ordered Porous Solids. 2011. V. 149. P. 149–181.
  9. 9. Sanchez C. M., Pérez-Pariente J. Zeolites and ordered porous solids: Fundamentals and applications. Valencia: Editorial Universitat Politècnica de València, 2011. P. 178–179.
  10. 10. Devasia G., Kumar R., Vaval N., Krishnamurty S. Insights into adsorption of various gases on extraframework cations of zeolite: A dispersion corrected DFT study on zeolite cluster models with Li+, Na+ and K+ charge compensating ions // Micropor. Mesopor. Mater. 2023. V. 361. ID 112739. https://doi.org/10.1016/j.micromeso.2023.112739
  11. 11. Jin Y., Xu Q., Zheng F., Lu J. Enhancement in CO2 adsorption by zeolite synthesized from co-combustion ash of coal and rice husk modified with lithium ion // J. Energy Inst. 2023. V. 110. ID 101348. https://doi.org/10.1016/j.joei.2023.101348
  12. 12. Shrotri A. R., Birje A. R., Niphadkar P. S., Bokade V. V., Mali N. A., Nandanwar S. U. Performance of Li exchange hierarchical X zeolite for CO2 adsorption and H2 separation // J. Ind. Eng. Chem. 2024. V. 133. P. 505–514. https://doi.org/10.1016/j.jiec.2023.12.027
  13. 13. Shrotri A. R., Birje A. R., Nandanwar S. U. Pressure swing adsorption of Li exchange hierarchical X zeolite for pure hydrogen from binary gas mixture // Int. J. Hydrogen Energy. 2024. V. 73. P. 138–147. https://doi.org/10.1016/j.ijhydene.2024.06.011
  14. 14. Кульпина Ю. Н., Прокофьев В. Ю., Гордина Н. Е., Петухова Н. В., Газахова С. И. Использование ИК-спектроскопии для изучения структуры низкомодульных цеолитов // Изв. вузов. Химия и хим. технология. 2017. Т. 60. № 5. С. 44–50. https://doi.org/10.6060/tcct.2017605.5405
  15. 15. Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M. Adsorption of Zn2+ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies // J. Hazard. Mater. 2010. V. 173. N 1–3. P. 637–646. https://doi.org/10.1016/j.jhazmat.2009.08.132
  16. 16. Joshi U. D., Joshi P. N., Tamhankar S. S., Joshi V. V., Rode C. V., Shiralkar V. P. Effect of nonframework cations and crystallinity on the basicity of NaX zeolites // Appl. Catal. A. 2003. V. 239. N 1–2. P. 209–220. https://doi.org/10.1016/S0926-860X (02)00391-5
  17. 17. Lai P. P., Rees L. V. C. Szilard–Chalmers cation recoil studies in zeolites X and Y. Part 1. Ion exchange in zeolites X and Y // J. Chem. Soc. Faraday Trans. 1. 1976. V. 72. P. 1809–1817. https://doi.org/10.1039/F19767201827
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library